微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method is suitable for determining the quantity of hydrogen peroxide, organic hydroperoxides, and organic peroxides as total active oxygen in various hydrocarbon streams for both quality control and quality assurance of the product.1.1 This test method covers the determination of trace peroxides in various hydrocarbon streams. A list of typical hydrocarbon streams can be found in Appendix X2.1.2 This test method is applicable to the determination of peroxides in petroleum liquids including, but not limited to, 1,3-butadiene, styrene, methylcyclohexane, and alpha olefins in the range of 0.1 mg/kg to 100 mg/kg active oxygen. The limit of detection (LOD) is 0.03 mg/kg for active oxygen and the limit of quantitation (LOQ) is 0.11 mg/kg active oxygen. The upper limit has been determined by the calibration range.NOTE 1: LOD and LOQ were calculated using data obtained during development of the method.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is of particular use as a quality control tool for a molding or synthesis operation. Acetaldehyde is a volatile degradation product generated during melt processing of PET. Thus, it becomes trapped in the sidewalls of a molded article and desorbs slowly into the contents packaged therein. In some foods and beverages AA can impart an off-taste that is undesirable, thus, it is important to know its concentration in PET articles that are to be used in food contact applications.5.2 The desorption conditions of 150 °C for 60 min are such that no measurable AA is generated by the sample during the desorption process.1.1 This test method covers a gas chromatographic procedure for the determination of the ppm residual acetaldehyde (AA) present in poly(ethylene terephthalate) (PET) homo-polymers and co-polymers which are used in the manufacture of beverage bottles. This includes sample types of both amorphous and solid-stated pellet and preform samples, as opposed to the bottle test, Test Method D4509, an acetaldehyde test requiring 24 h of desorption time at 23 °C into the bottle headspace and then the concentration of the headspace quantified by a similar GC method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 Methods A or B are useful in testing hermetically-sealed devices with internal volumes. Maximum acceptable leak rates have been established for microelectronic devices to assure performance characteristics will not be affected by in-leakage of air, water vapor or other contaminants over the projected life expected. Care must be taken to control the bombing pressure, bombing time and dwell time after bombing or the results can vary substantially.1.1 This practice2 covers procedures for testing devices that are sealed prior to testing, such as semiconductors, hermetically enclosed relays, pyrotechnic devices, etc., for leakage through the walls of the enclosure. They may be used with various degrees of sensitivity (depending on the internal volume, the strength of the enclosure, the time available for preparation of test, and on the sorption characteristics of the enclosure material for helium). In general practice the sensitivity limits are from 10−10 to 10−6 Pa m3/s (10−9 standard cm3/s to 10−5 standard cm3/s at 0°C) for helium, although these limits may be exceeded by several decades in either direction in some circumstances.1.2 Two test methods are described:1.2.1 Test Method A—Test part preparation by bombing.1.2.2 Test Method B—Test part preparation by prefilling.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

AbstractThese methods cover general procedures for the calibration of radiation detectors and the analysis of radionuclides. For each individual radionuclide, one or more of these methods may apply. These methods are concerned only with specific radionuclide measurements. The chemical and physical properties of the radionuclides are beyond the scope of this standard. Among the measurement standards discussed are: the calibration and usage of germanium detectors, scintillation detector systems, scintillation detectors for simple and complex spectra, and counting methods such as beta particle counting, aluminum absorption curve, alpha particle counting, and liquid scintillation counting. For each of the methods, the scope, apparatus used, summary of methods, preparation of apparatus, calibration procedure, measurement of radionuclide, performance testing, sources of uncertainty, precautions and tests, and calculations are detailed.1.1 This guide covers general procedures for the calibration of radiation detectors and measurement for radiation metrology for reactor dosimetry. For any particular radionuclide, one or more of these methods may apply.1.2 These techniques are concerned only with specific radionuclide measurements. The chemical and physical properties of the radionuclides are not within the scope of this standard.1.3 E3376, Standard Practice for Calibration and Usage of Germanium Detectors in Radiation Metrology for Reactor Dosimetry, was previously in Guide E181 and is now found in Volume 12.02 of the Annual Book of ASTM Standards. The discussion herein is not a sufficient substitute for the full standard. This guide is specifically NOT to be used as a direct reference to Practice E3376. Only the standard listed provides sufficient information to serve as a reference.1.4 Additional information on the setup, calibration, and quality control for radiometric detectors and measurements is given in Guide C1402 and Practice D7282.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

6.1 Test Method A is the most frequently used in leak testing components which are structurally capable of being evacuated to pressures of 0.1 Pa (approximately 10−3 torr). Testing of small components can be correlated to calibrated leaks, and the actual leak rate can be measured or acceptance can be based on a maximum allowable leak. For most production needs acceptance is based on acceptance of parts leaking less than an established standard which will ensure safe performance over the projected life of the component. Care must be exercised to ensure that large systems are calibrated with reference leak at a representative place on the test volume. Leak rates are determined by calculating the net gain or loss through a leak in the test part that would cause failure during the expected life of the device.6.2 Test Method B is used for testing vacuum systems either as a step in the final test of a new system or as a maintenance practice on equipment used for manufacturing, environmental test or for conditioning parts. As the volume tends to be large, a check of the response time as well as system sensitivity should be made. Volume of the system in liters divided by the speed of the vacuum pump in L/s will give the response time to reach 63 % of the total signal. Response times in excess of a few seconds makes leak detection difficult.6.3 Test Method C is to be used only when there is no convenient method of connecting the leak detector to the outlet of the high vacuum pump. If a helium leak detector is used and the high vacuum pump is an ion pump or cryopump, leak testing is best accomplished during the roughing cycle as these pumps leave a relatively high percentage of helium in the high vacuum chamber. This will obscure all but large leaks, and the trace gas will quickly saturate the pumps.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −8 Pa m3/s (1 × 10−9 Std cm 3/s)3 or greater. The test may be conducted on any object to be tested that can be evacuated and to the other side of which helium or other tracer gas may be applied.1.2 Three test methods are described:1.2.1 Test Method A—For the object under test capable of being evacuated, but having no inherent pumping capability.1.2.2 Test Method B—For the object under test with integral pumping capability.1.2.3 Test Method C—For the object under test as in Test Method B, in which the vacuum pumps of the object under test replace those normally used in the leak detector.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

6.1 Test Method A is frequently used to test large systems and complex piping installations that can be filled with a trace gas. Helium is normally used. The test method is used to locate leaks but cannot be used to quantify except for approximation. Care must be taken to provide sufficient ventilation to prevent increasing the helium background at the test site. Results are limited by the helium background and the percentage of the leaking trace gas captured by the probe.6.2 Test Method B is used to increase the concentration of trace gas coming through the leak by capturing it within an enclosure until the signal above the helium background can be detected. By introducing a calibrated leak into the same volume for a recorded time interval, leak rates can be measured.1.1 This practice covers procedures for testing and locating the sources of gas leaking at the rate of 1 × 10 −7 Pa m3/s (1 × 10−8 Std cm3/s)3 or greater. The test may be conducted on any device or component across which a pressure differential of helium or other suitable tracer gas may be created, and on which the effluent side of the leak to be tested is accessible for probing with the mass spectrometer sampling probe.1.2 Two test methods are described:1.2.1 Test Method A—Direct probing, and1.2.2 Test Method B—Accumulation.1.3 Units—The values stated in either SI or std-cc/sec units are to be regarded separately as standard. The values stated in each system may not be exact equivalents: therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The presence of trace amounts of hydrogen, oxygen, carbon monoxide, and carbon dioxide can have deleterious effects in certain processes using hydrocarbon products as feed stock. This test method is suitable for setting specifications, for use as an internal quality control tool, and for use in development and research work.1.1 This test method covers the determination of hydrogen, nitrogen, oxygen, methane, carbon monoxide, and carbon dioxide in the parts per billion mole (nmol/mol) to parts per million mole (µmol/mol) range in C2 and C3 hydrocarbons.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For some specific hazard statements, see Annex A1.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This practice covers the testing of the integrity of high-efficiency particulate air (HEPA) filters installed in laminar flow clean rooms of the ceiling to floor or wall to wall type, and laminar flow clean work stations using condensation nuclei detector. The recommended practice may be used to detect faults or voids in the filter media itself or in the joints between the filter and the room or work station structure. The preparation for testing and the procedure for the proper testing are presented in details.1.1 This practice covers the testing of the integrity of high-efficiency particulate air (HEPA) filters installed in laminar flow clean rooms of the ceiling to floor or wall to wall type, and laminar flow clean work stations. The recommended practice may be used to detect faults or voids in the filter media itself or in the joints between the filter and the room or work station structure. The determination of filter media efficiency is not within the scope of this practice.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exception—The values given in parentheses in inch-pound units are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
57 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页