微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 1475元 / 折扣价: 1254 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

5.1 Flash point and fire point of a liquid are physical properties that may be used to define their flammability hazards. The flash point may be used to classify materials in government regulations.1.1 This test method covers the determination by Tag Open-Cup Apparatus of the flash point and fire point of liquids having flash points between −18 and 165°C (0 and 325°F) and fire points up to 325°F.1.2 This test method, when applied to paints and resin solutions that tend to skin over or that are very viscous, gives less reproducible results than when applied to solvents.NOTE 1: In order to conserve time and sample, the fire point of a material may be determined by the Tag Open-Cup Method by continuing the heating of the specimen to its fire point. Fire points may also be determined by Test Method D92, which should be used for fire points beyond the scope of this test method.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors pertinent to an assessment of the fire hazard of a particular end use.1.5 Warning—Mercury has been designated by many regulatory agencies as a hazardous material that can cause central nervous system, kidney and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Safety Data Sheet (SDS) for details and EPA’s website, http://www.epa.gov/mercury/faq.htm, for additional information. Users should be aware that selling mercury and/or mercury containing products into your state or country may be prohibited by law.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This procedure is intended to be used to evaluate the ignitability of liquid wastes.5.2 Flash point measures the response of the subsample to heat and an ignition source under controlled laboratory conditions. It is only one of a number of properties that shall be considered in assessing the overall flammability hazard of a liquid waste material.5.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material.5.4 This test method uses a small sample volume (2 mL) and short test time (1 min).1.1 This test method covers the procedure for a flash point test, within the range of –20 to 70 °C, of liquid wastes using a small-scale closed cup tester.NOTE 1: Some apparatus are not designed for subambient temperature tests, so the testing range would be between 20 °C and 70 °C.NOTE 2: This test method is not applicable for liquid waste that forms a surface film (see Test Method D8175 for Finite Flash Point Determination of Wastes by Pensky-Martens Closed Cup Tester).1.2 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.3 This standard measures the ignitability properties of liquid wastes (which may be any discarded material), which may include secondary materials, off-specification products, and materials containing free liquids recovered during emergency response actions. Results from this test method may be used as part of a fire risk assessment of the material, but it is the responsibility of the user to perform any additional characterization needed for determination of storage, transport, treatment, or disposal per current regulations.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. See applicable Safety Data Sheets (SDS) for information about certified reference materials (CRMs) or secondary working standards (SWSs) that may be used in this test method. SDS may also be useful if some components of the waste sample are known.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This procedure is intended to be used to evaluate the ignitability of liquid wastes.5.2 Flash point measures the response of the subsample to applied heat and an ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a liquid waste material.5.3 Flash point can indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material.1.1 This test method covers the procedure for a finite flash point test, within the range of 20 to 70 °C, of liquid wastes using a manual or automated Pensky-Martens closed cup tester.1.2 This test method contains two procedures and is applicable to liquid waste, liquid phase(s) of multi-phase waste, liquid waste with suspended solids, or liquid waste that tends to form a surface film under test conditions.NOTE 1: If the liquid waste is of a viscosity such that the subsample volume will not be uniformly heated under the test conditions even with the increased stir rate of Procedure B, then use the small-scale method (Test Method D8174 for Finite Flash Point Determination of Liquid Wastes by Small-Scale Closed Cup Tester).1.3 Procedure A is applicable to non-viscous liquids that are without suspended solids. Procedure B is applicable to viscous liquids, liquids with suspended solids, or liquids that form films.NOTE 2: This test method is not applicable for corrosive liquid wastes (see Test Method D8174).1.4 Units—The values given in SI units are to be regarded as the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Warning statements appear throughout. Also see applicable Safety Data Sheets (SDS) for information about certified reference materials (CRMs) or secondary working standards (SWSs) that may be used in the analysis. SDS may also be useful if some components of the waste sample are known.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Flash point measures the response of the test specimen to heat and ignition source under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations by governmental regulatory agencies to define flammable and combustible materials and to classify them. Consult the particular regulation involved for precise definitions of these classes.5.3 Flash point can indicate the possible presence of highly volatile and flammable impurities or contaminants in a given liquid, such as the presence of residual solvents in solvent-refined drying oils.5.4 These equilibrium flash point test methods use a smaller specimen (2 mL) and a shorter test time (1 min) than traditional non-equilibrium test methods such as Test Method D56 and Test Methods D93.5.5 Test Methods D3828, Test Method D8174, and ISO 3679 are similar test methods and use the same apparatus.1.1 These test methods cover procedures for determining whether a material does or does not flash at a specified temperature (flash/no flash Method A) or for determining the lowest finite temperature at which a material does flash (Method B), when using a small scale closed-cup apparatus. The test methods are applicable to paints, enamels, lacquers, varnishes, solvents, and related products having a flash point between 0 °C and 110 °C (32 °F and 230 °F) and viscosity lower than 15 000 mm2/s (cSt) at 25 °C (77 °F).NOTE 1: Tests at higher or lower temperatures are possible however the precision has not been determined.NOTE 2: More viscous materials can be tested in accordance with Annex A4.NOTE 3: Organic peroxides can be tested in accordance with Annex A5, which describes the applicable safety precautions.NOTE 4: The U.S. Department of Labor (OSHA, Hazard Communications), the U.S. Department of Transportation (RSPA), and the U.S. Environmental Protection Agency (EPA) have specified Test Methods D3278 as one of several acceptable methods for the determination of flash point of liquids in their regulations.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The flash point temperature is one measure of the tendency of the test specimen to form a flammable mixture with air under controlled laboratory conditions. It is only one of a number of properties which must be considered in assessing the overall flammability hazard of a material.5.2 Flash point is used in shipping and safety regulations to define flammable and combustible materials and for classification purposes. This definition may vary from regulation to regulation. Consult the particular regulation involved for precise definitions of these classifications.5.3 This test method can be used to measure and describe the properties of materials in response to heat and an ignition source under controlled laboratory conditions and shall not be used to describe or appraise the fire hazard or fire risk of materials under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment, which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.5.4 Flash point can also indicate the possible presence of highly volatile and flammable materials in a relatively nonvolatile or nonflammable material, such as the contamination of lubricating oils by small amounts of diesel fuel or gasoline. This test method was designed to be more sensitive to potential contamination than Test Method D6450.1.1 This test method covers the determination of the flash point of fuels including diesel/biodiesel blends, lube oils, solvents, and other liquids by a continuously closed cup tester utilizing a specimen size of 2 mL, cup size of 7 mL, with a heating rate of 2.5 °C per minute.1.1.1 Apparatus requiring a specimen size of 1 mL, cup size of 4 mL, and a heating rate of 5.5 °C per minute must be run according to Test Method D6450.1.2 This flash point test method is a dynamic method and depends on definite rates of temperature increase. It is one of the many flash point test methods available and every flash point test method, including this one, is an empirical method.NOTE 1: Flash point values are not a constant physical chemical property of materials tested. They are a function of the apparatus design, the condition of the apparatus used, and the operational procedure carried out. Flash point can, therefore, only be defined in terms of a standard test method and no general valid correlation can be guaranteed between results obtained by different test methods or where different test apparatus is specified.1.3 This test method utilizes a closed but unsealed cup with air injected into the test chamber.1.4 The precision of this test method is applicable for testing samples with a flash point from 22.5 °C to 235.5 °C. Determinations below and above this range may be performed; however, the precision has not been established.1.5 If the user’s specification requires a defined flash point method other than this method, neither this method nor any other test method should be substituted for the prescribed test method without obtaining comparative data and an agreement from the specifier.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. Temperatures are in degrees Celsius, pressure in kilo-Pascals.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2 and 8.5.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The flash point measures the response of the sample to heat and flame under controlled laboratory conditions. It is only one of a number of properties that must be considered in assessing the overall flammability hazard of a material.5.2 As a result of physical factors inherent in the apparatus and procedure, the closed cup flash point does not necessarily represent the minimum temperature at which a material can evolve flammable vapors, and the absence of a flash point does not guarantee nonflammability (see Appendix X1 and Appendix X2).5.3 Flash point is used in shipping and safety regulations to define flammable and combustible materials. Test Methods D56, D93, and D3278 are specified as test methods for determining the flash point of these materials.5.4 If the process or handling conditions dictate the usage of a flammable material at temperatures ranging upward from 5 to 10°C below the closed-cup flash point, then a flammable vapor might be present above the liquid. In such cases, it may be more appropriate to use the temperature limit of flammability (as determined by Test Method E1232) instead of flash point.5.5 For single component samples, small-scale methods involving equilibrium procedures and only one flame pass per specimen are preferred.5.6 For mixtures containing small concentrations of volatile components, special procedures are needed to minimize the loss of volatiles, with consequent elevation of the flash point, while the sample is being heated. (See X2.5.)5.7 In cases where errors caused by loss of volatiles, downwards flame direction and quenching are unacceptable, the “lower temperature limit of flammability” can be determined instead using Test Method E1232. The temperature limit of flammability test chamber is sufficiently large to overcome flame quenching effects in most cases of practical importance, thus, usually indicating the presence of vapor-phase flammability if it does exist.1.1 This test method covers the determination of the flash point of liquid and solid chemical compounds flashing from below −10 to 370°C (16 to 700°F). The procedures and apparatus in Test Methods D56, D93, D3278, D3828, and D3941 are to be used. Modification to these procedures are specified for tests on solids and viscous liquids. The significance of the results obtained is discussed along with possible sources of error and factors that might cause interference.1.2 Suggestions for adapting this procedure to mixtures of chemicals are included (see Appendix X2).1.3 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment that take into account all of the factors that are pertinent to an assessment of the fire hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 Warning—Mercury has been designated by the United States Environmental Protection Agency (EPA) and many state agencies as a hazardous material that can cause central nervous system, kidney, and liver damage. Mercury, or its vapor, may be hazardous to health and corrosive to materials. Caution should be taken when handling mercury and mercury containing products. See the applicable product Material Safety Data Sheet (MSDS) for details and EPA’s website — http://www.epa.gov/mercury/faq.htm — for additional information. Users should be aware that selling mercury or mercury-containing products, or both, into your state may be prohibited by state law.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also Section 8.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1.1 This practice describes techniques for the determination of evaporated barium yield, getter gas content, and getter carbon monoxide sorption capacity for barium flash getters used in electron devices. Test conditions are chosen to approximate use conditions.1.2 Auxiliary procedures for cleaning, for determining vacuum system leak-up rates, for flashing getters, and for determining barium content in both getter fill and films are also given.1.3 The various tests described are destructive in nature. In general the tests are semiquantitative but they can be expected to yield comparative information on a single-laboratory basis to the precision indicated. No information relative to multilaboratory reproducibility is available.1.4 List of Methods DescribedMethod SectionBarium Content, Determination of, 9Acid-Base Titration Method 9.6Complexation (Titration) Method 9.7Gravimetric Method 9.4Photometric Method 9.5Weight Difference Method 9.8Barium Yield, Determination of, 10Carbon Monoxide Sorption Characteristics, Determination of 12Cleaning Procedures 6Getter Mount 6.3Getter Test Bulb 6.4Flashing Procedures 8Gas Content, Determination of for Doped Getters: 11Hydrogen 11.7Nitrogen for Undoped Getters: 11.8Preflash Gas Content 11.5Total Gas Content 11.4Leak-Up Rates, Determination of 71.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of whoever uses this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 4.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 An accurate measure of the total absorbed dose is necessary to ensure the validity of the data taken, to enable comparison to be made of data taken at different facilities, and to verify that components or circuits are tested to the radiation specification applied to the system for which they are to be used.5.2 The primary value of a calorimetric method for measuring dose is that the results are absolute. They are based only on physical properties of materials, that is, the specific heat of the calorimeter-block material and the Seebeck EMF of the thermocouple used or the temperature coefficient of resistance (α) of the thermistor used, all of which can be established with non-radiation measurements.5.3 The method permits repeated measurements to be made without requiring entry into the radiation cell between measurements.1.1 This test method covers a calorimetric measurement of the total absorbed dose delivered by a single pulse of electrons from an electron linear accelerator or a flash X-ray machine (FXR, e-beam mode). The test method is designed for use with pulses of electrons in the energy range from 10 to 50 MeV and is only valid for cases in which both the calorimeter and the test specimen to be irradiated are “thin” compared to the range of these electrons in the materials of which they are constructed.1.2 The procedure described can be used in those cases in which (1) the dose delivered in a single pulse is 5 Gy(matl)2 [500 rd (matl)] or greater, or (2) multiple pulses of a lower dose can be delivered in a short time compared to the thermal time constant of the calorimeter. The units for the total absorbed dose delivered to a material require the specification of the material and the notation “matl” refers to the active material of the calorimeter. The minimum dose per pulse that can be acceptably monitored depends on the variables of the particular test, including pulse rate, pulse uniformity, and the thermal time constant of the calorimeter.1.3 A determination of the total dose is made directly for the material of which the calorimeter block is made. The total dose in other materials can be calculated from this measured value using Eq 3 presented in this test method. The need for such calculations and the choice of materials for which calculations are to be made shall be subject to agreement by the parties to the test.1.4 The values stated in SI units are to be regarded as the standard. The values in parenthesis are provided for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
37 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页