微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Applying Test Method F390 to large flat panel substrates presents a number of serious difficulties not anticipated in the development of that standard. The following problems are encountered.5.1.1 The four-point probe method may be destructive to the thin film being measured. Sampling should therefore be taken close to an edge or corner of the plate, where the film is expendable. Special geometrical correction factors are then required to derive the true sheet resistance.5.1.2 Test Method F390 is limited to a conventional collinear probe arrangement, but a staggered collinear and square arrays are useful in particular circumstances. Correction factors are needed to account for nonconventional probe arrangements.5.1.3 Test Method F390 anticipates a precision testing arrangement in which the probe mount and sample are rigidly positioned. There is no corresponding apparatus available for testing large glass or plastic substrates. Indeed, it is common in flat panel display making that the probe is hand held by the operator.5.1.4 It is difficult, given the conditions cited in 5.1.3, to ensure that uniform probe spacing is not degraded by rough handling of the equipment. The phased square array, described, averages out probe placement errors.5.1.5 This practice is estimated to be precise to the following levels. Otherwise acceptable precision may be degraded by probe wobble, however (see 8.6.4).5.1.5.1 As a referee method, in which the probe and measuring apparatus are checked and qualified before use by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.01 RS.5.1.5.2 As a routine method, with periodic qualifications of probe and measuring apparatus by the procedures of Test Method F390 paragraph 7 and this practice, paragraph 8: standard deviation, s, from measured sheet resistance, RS, is ≤ 0.02 RS.1.1 This practice describes methods for measuring the sheet electrical resistance of sputtered thin conductive films deposited on large insulating substrates, used in making flat panel information displays. It is assumed that the thickness of the conductive thin film is much thinner than the spacing of the contact probes used to measure the sheet resistance.1.2 This standard is intended to be used with Test Method F390.1.3 Sheet resistivity in the range 0.5 to 5000 ohms per square may be measured by this practice. The sheet resistance is assumed uniform in the area being probed.1.4 This practice is applicable to flat surfaces only.1.5 Probe pin spacings of 1.5 mm to 5.0 mm, inclusive (0.059 to 0.197 in inclusive) are covered by this practice.1.6 The method in this practice is potentially destructive to the thin film in the immediate area in which the measurement is made. Areas tested should thus be characteristic of the functional part of the substrate, but should be remote from critical active regions. The method is suitable for characterizing dummy test substrates processed at the same time as substrates of interest.1.7 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes.4.2 This test method determines the maximum loading on a graphite specimen with simple beam geometry in 4-point bending, and it provides a means for the calculation of flexural strength at ambient temperature and environmental conditions.AbstractThis test method details the standard procedures for determining the flexural strength of manufactured carbon and graphite articles using a simple beam in four-point loading at room temperature. The four-point loading fixture shall consist of spherical bearing blocks of hardened steel or its equivalent to ensure that forces applied to the beam are normal only and without eccentricity, and distortion of the loading member is prevented. Judicious use of linkages, rocker bearings, and flexure plates may maintain the parallel direction of loads and reactions. The test specimens shall be prepared to yield a parallelepiped with cross sections that are rectangular, faces that are parallel and flat, and edges that are free from visible flaws and chips.1.1 This test method covers determination of the flexural strength of manufactured carbon and graphite articles using a simple beam in four-point loading at room temperature.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method can be used to determine the relative wear preventive properties of lubricating fluids in sliding contact under the prescribed test conditions. No attempt has been made to correlate this test with balls in rolling contact. The user of this test method should determine to his own satisfaction whether results of this test procedure correlate with field performance or other bench test machines.1.1 This test method covers a procedure for making a preliminary evaluation of the anti-wear properties of fluid lubricants in sliding contact by means of the Four-Ball Wear Test Machine. Evaluation of lubricating grease using the same machine is detailed in Test Method D2266.1.2 The values stated in SI units are to be regarded as standard. Because the equipment used in this test method is only available in kgf units, SI units in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The Calculated Cetane Index by Four Variable Equation is useful for estimating ASTM cetane number when a test engine is not available for determining this property directly and when cetane improver is not used. It may be conveniently employed for estimating cetane number when the quantity of sample available is too small for an engine rating. In cases where the ASTM cetane number of a fuel has been previously established, the Calculated Cetane Index by Four Variable Equation is useful as a cetane number check on subsequent batches of that fuel, provided the fuel's source and mode of manufacture remain unchanged.NOTE 2: Test Methods D6890 and D7170 may be used to obtain a Derived Cetane Number (DCN) when the quantity of sample is too small for an engine test. These methods do measure the effect of cetane improver.5.2 Within the range from 32.5 to 56.5 cetane number, the expected error of prediction of Procedure A of the Calculated Cetane Index by Four Variable Equation will be less than ±2 cetane numbers for 65 % of the distillate fuels evaluated. Errors may be greater for fuels whose properties fall outside the recommended range of application.1.1 The calculated Cetane Index by Four Variable Equation provides a means for estimating the ASTM cetane number (Test Method D613) of distillate fuels from density and distillation recovery temperature measurements. The value computed from the equation is termed the Calculated Cetane Index by Four Variable Equation.1.2 The Calculated Cetane Index by Four Variable Equation is not an optional method for expressing ASTM cetane number. It is a supplementary tool for estimating cetane number when a result by Test Method D613 is not available and if cetane improver is not used. As a supplementary tool, the Calculated Cetane Index by Four Variable equation must be used with due regard for its limitations.1.3 Procedure A is to be used for Specification D975, Grades No. 1–D S15, No. 1–D S500, No. 1–D S5000, No. 2–D S15, No. 2–D S5000, and No. 4–D. This method for estimating cetane number was developed by Chevron Research Co.2 Procedure A is based on a data set including a relatively small number of No. 1–D fuels. Test Method D4737 Procedure A may be less applicable to No. 1–D S15, No. 1–D S500, and No. 1–D S5000 than to No. 2–D grade S5000 or to No. 4–D fuels.1.3.1 Procedure A has been verified as applicable to Grade No. 2–D S15 diesel fuels.31.4 Procedure B is to be used for Specification D975, Grade No. 2–D S500.1.5 The test method “Calculated Cetane Index by Four Variable Equation” is particularly applicable to Grade 1–D S5000, Grade No. 1–D S500, Grade No. 2–D S5000 and Grade No. 2–D S500 diesel fuel oils containing straight-run and cracked stocks, and their blends. It can also be used for heavier fuels with 90 % recovery points less than 382 °C and for fuels containing derivatives from oil sands and oil shale.NOTE 1: Sxx is the designation for maximum sulfur level specified for the grade. For example, S500 grades are those with a maximum sulfur limit of 500 ppm (μg/g).1.6 Biodiesel blends are excluded from this test method, because they were not part of the datasets use to develop either Procedure A or B.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Measurement of soil resistivity is used for assessment and control of corrosion of buried structures. Soil resistivity is used both for the estimation of expected corrosion rates and for the design of cathodic protection systems. As an essential design parameter for cathodic protection systems, it is important to take as many measurements as necessary so as to get a sufficiently representative characterization of the soil environment to which the entire buried structure will be exposed.1.1 This test method covers the equipment and procedures for the measurement of soil resistivity, both in situ and for samples removed from the ground, for use in assessment and control of corrosion of buried structures.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard. Soil resistivity values are reported in ohm-centimeter.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
45 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页