微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is intended for application in the semiconductor industry for evaluating the purity of materials (for example, sputtering targets, evaporation sources) used in thin film metallization processes. This test method may be useful in additional applications, not envisioned by the responsible technical committee, as agreed upon between the parties concerned.5.2 This test method is intended for use by GDMS analysts in various laboratories for unifying the protocol and parameters for determining trace impurities in pure titanium. The objective is to improve laboratory to laboratory agreement of analysis data. This test method is also directed to the users of GDMS analyses as an aid to understanding the determination method, and the significance and reliability of reported GDMS data.5.3 For most metallic species the detection limit for routine analysis is on the order of 0.01 weight ppm. With special precautions detection limits to sub-ppb levels are possible.5.4 This test method may be used as a referee method for producers and users of electronic-grade titanium materials.1.1 This test method covers the determination of concentrations of trace metallic impurities in high purity titanium.1.2 This test method pertains to analysis by magnetic-sector glow discharge mass spectrometer (GDMS).1.3 The titanium matrix must be 99.9 weight % (3N-grade) pure, or purer, with respect to metallic impurities. There must be no major alloy constituent, for example, aluminum or iron, greater than 1000 weight ppm in concentration.1.4 This test method does not include all the information needed to complete GDMS analyses. Sophisticated computer-controlled laboratory equipment skillfully used by an experienced operator is required to achieve the required sensitivity. This test method does cover the particular factors (for example, specimen preparation, setting of relative sensitivity factors, determination of sensitivity limits, etc.) known by the responsible technical committee to effect the reliability of high purity titanium analyses.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Aromatic content is a key characteristic of hydrocarbon oils and can affect a variety of properties of the oil including its boiling range, viscosity, stability, and compatibility of the oil with polymers.5.2 Existing methods for estimating aromatic contents use physical measurements, such as refractive index, density, and number average molecular weight (see Test Method D3238) or infrared absorbance4 and often depend on the availability of suitable standards. These NMR procedures do not require standards of known aromatic hydrogen or aromatic carbon contents and are applicable to a wide range of hydrocarbon oils that are completely soluble in chloroform at ambient temperature.5.3 The aromatic hydrogen and aromatic carbon contents determined by this test method can be used to evaluate changes in aromatic contents of hydrocarbon oils due to changes in processing conditions and to develop processing models in which the aromatic content of the hydrocarbon oil is a key processing indicator.1.1 This test method covers the determination of the aromatic hydrogen content (Procedures A and B) and aromatic carbon content (Procedure C) of hydrocarbon oils using high-resolution nuclear magnetic resonance (NMR) spectrometers. Applicable samples include kerosenes, gas oils, mineral oils, lubricating oils, coal liquids, and other distillates that are completely soluble in chloroform at ambient temperature. For pulse Fourier transform (FT) spectrometers, the detection limit is typically 0.1 mol % aromatic hydrogen atoms and 0.5 mol % aromatic carbon atoms. For continuous wave (CW) spectrometers, which are suitable for measuring aromatic hydrogen contents only, the detection limit is considerably higher and typically 0.5 mol % aromatic hydrogen atoms.1.2 The reported units are mole percent aromatic hydrogen atoms and mole percent aromatic carbon atoms.1.3 This test method is not applicable to samples containing more than 1 mass % olefinic or phenolic compounds.1.4 This test method does not cover the determination of the percentage mass of aromatic compounds in oils since NMR signals from both saturated hydrocarbons and aliphatic substituents on aromatic ring compounds appear in the same chemical shift region. For the determination of mass or volume percent aromatics in hydrocarbon oils, chromatographic, or mass spectrometry methods can be used.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.2 and 7.3.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 Procedures A and B:1.1.1 Test Procedures A and B provide for the determination of individual hydrocarbon components of spark-ignition engine fuels and their mixtures containing oxygenate blends (MTBE, ETBE, ethanol, and so forth.) with boiling ranges up to 225oC. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as, blending stocks (naphthas, reformates, alkylates, and so forth.) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels.1.1.2 Based on the cooperative study results, individual component concentrations and precision are determined in the range of 0.01 to approximately 30 % mass percent. The procedures may be applicable to higher and lower concentrations for the individual components; however, the user shall verify the accuracy if the procedures are used for components with concentrations outside the specified ranges.1.1.3 Test Procedures A and B also determine methanol, ethanol, t-butanol methyl t-butyl ether (MTBE), ethyl t-butyl ether (ETBE), t-amyl-methyl-ether (TAME) in spark ignition engine fuels in the concentration range of 1 to 30 mass %. However, the cooperative study data provided sufficient statistical data for MTBE in Procedure B only.1.1.4 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this test method is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic or naphthenic, or both (for example, virgin naphthas) constituents above N-octane may reflect significant errors in PONA type groupings. Based on the gasoline samples in the interlaboratory cooperative study, these procedures are applicable to concentrations of olefins to less than 25 mass %. However, some interfering coelution with the olefins above C7 is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Appendix X1of this test method compares results of the test procedures with other test methods for selected components, including olefins, and several group types for several interlaboratory cooperative study samples. Although benzene, toluene and several oxygenates are determined, when doubtful as to the analytical results of these components, confirmatory analysis can be obtained by using the specific test methods listed in the reference section.Total olefins in the samples may be obtained or confirmed, or both, if necessary, by Test Method D1319 (volume %) or other test methods, such as those based on multidimentional PONA type of instruments.1.1.5 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744 or equivalent. Other compounds containing oxygen, sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required, it is recommended that test methods for these specific materials be used, such as Test Methods D4815 and D5599 for oxygenates, and Test Method D5623 for sulfur compounds or equivalent.1.2 Procedure C1.2.1 Test Procedure C provides for the determination of individual hydrocarbon components of spark-ignition engine fuels with boiling ranges up to 225oC. Other light liquid hydrocarbon mixtures typically encountered in petroleum refining operations, such as, blending stocks (naphthas, reformates, alkylates, and so forth) may also be analyzed; however, statistical data was obtained only with blended spark-ignition engine fuels. The tables related to Procedure C enumerate the components reported. Component concentrations are determined in the range of 0.10 to 15 mass %. The procedure may be applicable to higher and lower concentrations for the individual components; however, the user shall verify the accuracy if the procedures are used for components with concentrations outside the specified ranges.1.2.2 This test method is applicable also to spark-ignition engine fuel blends containing oxygenated components. However, in this case, the oxygenate content shall be determined by Test Methods D5599 or D4815.1.2.3 Benzene co-elutes with 1-methylcyclopentene. Benzene content shall be determined by Test Method D3606 or D5580.1.2.4 Toluene co-elutes with 2,3,3-trimethylpentane. Toluene content shall be determined by Test Method D3606 or D5580.1.2.5 Although a majority of the individual hydrocarbons present are determined, some co-elution of compounds is encountered. If this procedure is utilized to estimate bulk hydrocarbon group-type composition (PONA) the user of such data should be cautioned that some error will be encountered due to co-elution and a lack of identification of all components present. Samples containing significant amounts of olefinic (for example, cracked naphthas) or naphthenic, or both (for example, virgin naphthas) constituents above N-octane may reflect significant errors in PONA type groupings. Based on the interlaboratory cooperative study, this procedure is applicable to concentrations of olefins to less than 20 mass %. However, some interfering coelution with the olefins above normal heptane is possible, particularly if blending components or their higher boiling cuts such as those derived from fluid catalytic cracking (FCC) are analyzed, and the total olefin content may not be accurate. Since many of the olefins in spark ignition fuels are at a concentration below 0.10 %, they are not reported by this test method and may bias the total olefin results low.Total olefins in the samples may be obtained or confirmed, or both by Test Method D1319 (volume %) or other test methods, such as those based on multidimentional PONA type of instruments.1.2.6 If water is or is suspected of being present, its concentration may be determined, if desired, by the use of Test Method D1744. Other compounds containing sulfur, nitrogen, and so forth may also be present, and may co-elute with the hydrocarbons. If determination of these specific compounds is required it is recommended that test methods for these specific materials be used, such as Test Method D5623 for sulfur compounds.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
50 条记录,每页 15 条,当前第 1 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页