微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the origin of the water, determine if it is a possible pollutant, or if it is related to a potential source of a valuable mineral. For example, in geochemical studies some correlation data indicate that fluoride is an indirect indicator of the presence of lithium.1.1 This test method2 covers the determination of soluble fluoride ions in brackish water, seawater and brines by use of a fluoride selective electrode.1.2 Samples containing from 1.0 to 25 mg/L can be analyzed by this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the origin of the water, determine if it is a possible pollutant or determine if it is a commercial source of a valuable constituent such as iodine or bromine.1.1 These test methods2 cover the determination of soluble iodide and bromide ions, or both, in brackish water, seawater, and brines. Four test methods are given as follows:1.1.1 Test Method A for both Iodide and Bromide Ions—Volumetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide and from 5 mg/L to 6500 mg/L bromide (Sections 7 – 15).1.1.2 Test Method B for Iodide Ion—Colorimetric, for concentrations from 0.2 mg/L to 2000 mg/L iodide (Sections 16 – 25).1.1.3 Test Method C for Iodide Ion—Selective electrode, for concentrations from 1 mg/L to 2000 mg/L iodide (Sections 26 – 34).1.1.4 Test Method D for Bromide Ion—Colorimetric, for concentrations from 40 mg/L to 6500 mg/L bromide (Sections 35 – 44).1.2 Test Method A is intended for use on all brackish waters, seawaters, and brines that contain appreciable amounts of iodide or bromide ions or both. Test Methods B, C, and D, because of their rapidity and sensitivity, are recommended for the analysis of brackish waters, seawaters, and brines in the field and in the laboratory.1.3 Samples containing from 0.2 mg/L to 2000 mg/L of iodide or 5 mg/L to 6500 mg/L of bromide may be analyzed by these methods.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see 20.2 and 39.2.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Alkalinity as carbonate and bicarbonate of saline water is very important in chemical waterflooding or tertiary recovery processes for recovering petroleum. Alkaline waters offer better wetting to the formation rock and improve oil release. As an additional benefit, ions that provide alkalinity adsorb on rock surfaces occupying adsorption sites and decrease the loss of recovery chemical by adsorption. Determination of alkalinity in waters used in tertiary recovery processes is therefore very important.5.2 An alkalinity value is necessary in the calculation of carbonate scaling tendencies of saline waters. It is also necessary to determine the alkalinity if the ionic balance of a water analysis is to be used as a check of the reliability of the analysis.1.1 This test method covers the determination of alkalinity in brackish water, seawater, and brines.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Chloride is present in virtually all oil field brines, seawaters, and many waste waters. Identification of the origin of the water and selection of its disposal method may be based upon the chloride content. The chloride content is also used to estimate the resistivity of formation waters and to differentiate between subsurface formations.1.1 This test method2 is applicable to the measurement of chloride in highly mineralized waters such as oil field brines, seawater, and brackish water. The test method is based upon the titration of chloride with silver nitrate, using a visual indicator.1.2 Samples containing from 10 mg to 150 mg of chloride can be analyzed by this test method. These levels are achieved by dilution as described in the test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 It is the user's responsibility to assure the validity of the method for untested types of water.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The procedures described herein are recommended for evaluating the corrosion or marine fouling behavior, or both, of materials exposed to quiescent or local tidal flow conditions, or both.4.1.1 This practice is not intended to cover the influence of high seawater velocity or the behavior of materials in seawater which has been transported from its source.4.1.2 Some aspects of this practice may be applicable to testing in tanks and troughs, which are continuously provided with surface seawater pumped directly from the source. Additionally, some aspects may also be applicable to deep ocean testing.NOTE 1: Guide G78 provides guidance for conducting crevice corrosion tests under controlled seawater test conditions.4.2 While the duration of testing may be dictated by the test objectives, exposures of more than six months or one year are commonly used to minimize the effects of environmental variables associated with seasonal changes or geographic location, or both. Refer also to 7.3 for test duration recommendations.4.3 The procedures described are applicable for the exposure of simple test panels, welded test panels, or those configured to assess the effects of crevices, or both, such as those described in Guide G78. In addition, they are useful for testing of actual components and fabricated assemblies.4.4 It is prudent to include control materials with known resistance to seawater corrosion or fouling, or both, as described in Test Method D3623.NOTE 2: Materials which have been included in ASTM Worldwide Seawater Corrosivity Studies include UNS K01501 (carbon steel), UNS C70600 (90/10 CuNi) and UNS A95086 (5086-H116 Al).2, 4NOTE 3: In the case of evaluations of aluminum alloys, care should be exercised in the location of specimens near copper or high copper-containing alloys. In some instances, it is not sufficient to simply electrically isolate specimens to prevent bi-metallic (galvanic) corrosion; copper ions from nearby corroding copper or copper-base alloys can deposit on aluminum and accelerate its corrosion.1.1 This practice covers conditions for the exposure of metals, alloys, and other materials in natural surface seawater such as those typically found in bays, harbors, channels, and so forth,2 as contrasted with deep ocean testing.3 This practice covers full immersion, tidal zone and related splash, and spray zone exposures.2, 41.2 This practice sets forth general procedures that should be followed in conducting seawater exposure tests so that meaningful comparisons may be made from one location to another.1.3 This practice identifies recommended procedures for evaluating the effects of natural surface seawater on the materials exposed.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Effective antifouling coatings are essential for the retention of speed and reduction of operating costs of ships. This test method is designed as a screening test to evaluate antifouling coating systems under conditions of hydrodynamic stress caused by water flow alternated with static exposure to a fouling environment. A dynamic test is necessary because of the increasing availability of AF coatings that are designed to ablate in service to expose a fresh antifouling surface. Because no ship is underway continually, a static exposure phase is included to give fouling microorganisms the opportunity to attach under static conditions. After an initial 30-day static exposure, alternated 30-day dynamic and static exposures are recommended as a standard cycle. The initial static exposure is selected to represent vessels coming out of drydock and sitting pierside while work is being completed. This gives the paint time to lose any remaining solvents, complete curing, absorb water, and, in general, stabilize to the in-water environment.5.2 This test method is intended to provide a comparison with a control antifouling coating of known performance in protecting underwater portions of ships’ hulls. This test method gives an indication of the performance and anticipated service life of antifouling coatings for use on seagoing vessels. However, the degree of correlation between this test method and service performance has not been determined.1.1 This test method covers the determination of antifouling performance and reduction of thickness of marine antifouling (AF) coatings by erosion or ablation (see Section 3) under specified conditions of hydrodynamic shear stress in seawater alternated with static exposure in seawater. An antifouling coating system of known performance is included to serve as a control in antifouling studies.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazards statement, see Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Identification of a brackish water, seawater, or brine is determined by comparison of the concentrations of their dissolved constituents. The results are used to evaluate the water as a possible pollutant, or as a commercial source of a valuable constituent such as lithium.1.1 This test method covers the determination of soluble lithium, potassium, and sodium ions in brackish water, seawater, and brines by atomic absorption spectrophotometry.21.2 Samples containing from 0.1 to 70 000 mg/L of lithium, potassium, and sodium may be analyzed by this test method.1.3 This test method has been used successfully with artificial brine samples. It is the user's responsibility to ensure the validity of this test method for waters of untested matrices.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversion to inch-pound units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The determination of sulfate and other dissolved constituents is important in identifying the source of brines produced during the drilling and production phases of crude oil or natural gas.1.1 This test method covers the turbidimetric determination of sulfate ion in brackish water, seawater, and brines. It has been used successfully with synthetic brine grade waters; however, it is the user's responsibility to ensure the validity of this test method to other matrices.1.2 This test method is applicable to waters having an ionic strength greater than 0.65 mol/L and a sulfate ion concentration greater than 25 mg/L. A concentration less than 25 mg/L sulfate can be determined by using a standard addition method.1.3 For brines having an ionic strength of less than 0.65 mol/L, refer to Test Methods D516.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
29 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页