微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method is designed to evaluate the effectiveness of cleaning reusable medical instruments using a specified cleaning process.5.2 This test method may be used to determine the effectiveness of cleaning processes of recesses, hinged sites, lumina, or other difficult-to-reprocess areas of reusable medical instruments.5.3 This test method may also be used to verify the claims for any portion of the cleaning cycle.5.4 The recovery of surviving microorganisms may be accomplished using swabbing, rinsing, or total immersion of instruments.5.5 The efficacy of the elution methods or loss of the applied inoculum may be assessed by recovery of target organisms from control instruments that have not been subjected to the cleaning process.1.1 This test method is written principally for large medical instruments or instruments with internal channels or recesses (for example, flexible endoscopes) but may be used for any resuable medical instruments.1.2 This test method describes a procedure for testing the efficacy of a cleaning process for reusable medical instruments artificially contaminated with mixtures of microorganisms and simulated soil.1.3 The test method utilizes bacterial spores as tracers for foreign materials and quantifies their removal as a means of determining the efficacy of a cleaning process.1.4 The test method is designed for use by manufacturers of medical instruments and devices. However, it may also be employed by other individuals who have a knowledge of the instruments, techniques and access to appropriate facilities.1.5 Worst-case conditions can be represented by exaggerating a specific test parameter or otherwise intentionally simulating an extreme condition such as performing the test without cleaning solutions or utilizing instruments which are not new.1.6 The test procedure is devised to determine the efficacy of a cleaning process as applied to a particular instrument or group of instruments by simulating actual use situations.1.7 The test procedure may be performed on test instruments using a complete cleaning cycle or be limited to particular phases of the cycle such as precleaning, manual cleaning, automated cleaning, or rinsing.1.8 The test procedure is normally performed on a number of external and internal sites, but it may be restricted to one particular site on the instrument.1.9 A knowledge of microbiological and aseptic techniques and familiarity with the instruments is required to conduct these procedures.NOTE 1: Because contamination of the surfaces of instruments may occur as a result of rinsing with tap water, bacteria-free water should be used for all rinsing when a water rinse step is part of the cleaning directions.NOTE 2: Test methods to determine the effectiveness of cleaning medical instruments has only recently been actively debated, and research efforts are in their infancy. Because published experimental results are scarce, it is premature to dictate experimental reagents, conditions or acceptance criteria.NOTE 3: The total elimination of the target organisms is not the goal of cleaning. Therefore, there will almost always be a number of microorganisms surviving on the test instruments unless one of the solutions or processes disinfects or sterilizes the test instrument. The results of various clinical and laboratory tests suggest that cleaning processes alone can produce a 102 to 104 log10 reduction in bioburden. The exact reduction will depend upon the precise experimental conditions. The criteria for judging cleanliness should be determined and recorded before initiation of the test procedure.NOTE 4: This test protocol employs target spores as indicators or tracers for foreign materials and monitors their removal by the cleaning process. It is certainly possible that other particulate target materials, such as microbeads (latex beads) could be used in place of microbes. These alternate approaches would be more practical in those circumstances where microbiological expertise is limited.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
ASTM D5509-96 Standard Practice for Exposing Plastics to a Simulated Compost Environment (Withdrawn 2002) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

1.1 This practice covers the exposure of plastics to a specific test environment. The test environment is a laboratory-scale reactor that simulates a self-heating composting system and that uses aeration to control maximum temperature. Plastic exposure occurs in the presence of a media undergoing aerobic composting. The standard media simulates a municipal solid waste from which inert materials have been removed. This practice allows for the use of other media to represent particular waste streams. This practice provides exposed specimens for further testing and for comparison with controls. This test environment does not necessarily reproduce conditions that could occur in a particular full-scale composting process. 1.2 Changes in the material properties of the plastic and controls should be determined using appropriate ASTM test procedures. Changes could encompass physical and chemical changes such as disintegration and degradation. 1.3 This practice may be used for different purposes. Therefore, the interested parties must select the following: exposure conditions from those allowed by this practice; criteria for a valid exposure, that is, minimum or maximum change requirements for the compost and controls; and the magnitudes of material properties changes required for the plastic specimens. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8. Note 1-There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

1.1 This practice covers the exposure of plastics to a specific test environment. The test environment is an externally-heated laboratory-scale reactor that simulates a composting system. Plastic exposure occurs in the presence of a media undergoing aerobic composting. The standard media simulates a municipal solid waste from which inert materials have been removed. This practice allows for the use of other media to represent particular waste streams. This practice provides exposed specimens for further testing and for comparison with controls. This test environment does not necessarily reproduce conditions that could occur in a particular full-scale composting process. 1.2 Changes in the material properties of the plastic and controls should be determined using appropriate ASTM test procedures. Changes could encompass physical and chemical changes such as disintegration and degradation. 1.3 This practice may be used for different purposes. Therefore, the interested parties must select: exposure conditions from those allowed by this practice; criteria for a valid exposure, that is, minimum or maximum change requirements for the compost and controls; and the magnitudes of material properties changes required for the plastic specimens. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8. Note 1-There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Shipping containers and the interior packaging materials are used to protect their contents from the hazards encountered in handling, transportation, and storage. Shock is one of the more troublesome of these hazards. Free-fall drop testing, while easy to perform, often understresses the test specimen by subjecting it to drops which are not perpendicular to the dropping surface. Note 1: For example, testing has shown that non-perpendicular drops, 2° off perpendicularity, result in 8 % lower acceleration into the test specimen resulting from the impact energy dispersing in several axes.4 4.1.1 Controlled shock input by shock machines provides a convenient method for evaluating the ability of shipping containers, interior packaging materials, and contents to withstand shocks. Simulated free-fall drop testing of package systems, which have critical elements, has produced good results where the frequency of the shock pulse is at least three times that of the package system's natural frequency. 4.2 As in most mechanical shock test procedures, fixturing of the package on the shock test machine may have significant influence on the test results. Typically, packages will be firmly held on the table by securing some type of cross member(s) across the top of the package. Care should be taken that any pressure resulting from such fixturing should be minimal, particularly when the container being tested is corrugated or some other similar material. 4.2.1 In cases where low-acceleration, long-duration responses are anticipated, any fixturing can potentially influence packaged item response and can possibly alter any correlation between this test method and free-fall drop testing. Where such correlation is desired, the package can be tested without it being fixed directly to the table. Note that in such circumstances, the shipping container can vigorously rebound from the table and can, if not otherwise controlled, present a safety problem for operators. Fixing the shipping container to the shock machine table is most often recommended for safety and convenience, but accuracy and precision of this test method should not be compromised by such fixturing. Note 2: A rigid package system with a natural frequency above 83 Hz requires a shock pulse shorter than the 2-ms (nominal) duration currently available with many of today's shock machines: where: ds   =   shock pulse duration, s, fs   =   shock pulse frequency, Hz, and fp   =   package system frequency, which may be determined by Test Methods D999. Similarly, a shock machine using an input shock pulse duration of 3 ms would only be effective with package system frequencies below 56 Hz. 1.1 This test method covers the general procedures of using shock machines to replicate the effects of vertical drops of loaded shipping containers, cylindrical containers, and bags and sacks. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method determines the effectiveness of UVGI devices for reducing viable microorganisms deposited on carriers.5.2 This test method evaluates the effect soiling agents have on UVGI antimicrobial effectiveness.5.3 This test method determines the delivered UVGI dose.1.1 This test method defines test conditions to evaluate ultraviolet germicidal irradiation (UVGI) light devices (mercury vapor bulbs, light-emitting diodes, or xenon arc lamps) that are designed to kill/inactivate influenza virus deposited on inanimate carriers.1.2 This test method defines the terminology and methodology associated with the ultraviolet (UV) spectrum and evaluating UVGI dose.1.3 This test method defines the testing considerations that can reduce UVGI surface kill effectiveness (that is, soiling).1.4 Protocols for adjusting the UVGI dose to impact the reductions in levels of viable influenza virus are provided (Annex A1).1.5 This test method does not address shadowing.1.6 The test method should only be used by those trained in microbiology and in accordance with the guidance provided by Biosafety in Microbiological and Biomedical Laboratories.21.7 This test method is specific to influenza viruses1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method is designed to provide a uniform test to determine the suitability of Coating Service Level 1 coatings used inside primary containment of light-water nuclear facilities under simulated DBA conditions. This test method is intended only to demonstrate that under DBA conditions, the coatings will remain intact and not form debris which could unacceptably compromise the operability of engineered safety systems. Deviations in actual surface preparation and in application and curing of the coating materials from qualification test parameters require an engineering evaluation to determine if additional testing is required.4.2 Since different plants have different tolerance levels for coating conditions, the definition of appropriate acceptance criteria is to be developed by the license holder based on individual plant engineered safety systems operability considerations.4.3 Use of this standard is predicated on the testing facility having a quality assurance program acceptable to the licensee.1.1 This test method establishes procedures for evaluating protective coating systems test specimens under simulated DBA conditions. Included are a description of conditions and apparatus for temperature-pressure testing, and requirements for preparing, irradiating, testing, examining, evaluating, and documenting the samples.1.2 Consideration should be given to testing using worst case conditions (for example, surface preparation, temperature and pressure profile, irradiation, spray chemistry, chemical resistance, etc.) in an effort to reduce the number of tests required by changing plant accident calculations, changes in coating selection, etc.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 SGCs are used to produce asphalt mixture specimens in the laboratory to assess volumetric properties and predict pavement performance. In the fabrication of an SGC specimen in accordance with Test Method D6925, loose asphalt mixture is placed inside a metal mold, which is then placed into an SGC. A constant consolidation pressure is applied to the sample while the mold gyrates at a nominally constant angle (referred to as the internal angle of gyration) and rate. Consistency in the density of the asphalt specimens produced as measured by Test Method D2726/D2726M or D6752/D6752M is very important to the validity of the tests performed. Specimens of a consistent density are produced when an SGC maintains a constant pressure and a known constant internal angle of gyration during the compaction process.5.2 There are several manufacturers and models of SGC. Each model employs a unique method of setting, inducing, and maintaining the internal angle of gyration. Each model also employs a unique calibration system to measure the external angle of gyration. These existing calibration systems cannot be used universally on all of the different SGC models commercially available. Inconsistencies in asphalt specimens produced on different SGC models have been at least partially attributed to variations in the angle of gyration.5.3 This method describes instruments and processes that can be used to independently measure the internal angle of gyration of any manufacturer’s SGC model under simulated loading conditions. The external shape of the instrument chassis ensures that the points of physical contact between the mold end plates and the instrument occur at a fixed and known distance away from the axis of gyration. As a result, the vertical load is applied at these fixed points, creating tilting moments at each end of the mold.5.4 Unless otherwise specified, a tilting moment of 466.5 N-m shall be applied to the SGC by the instrument while making this measurement.NOTE 1: The quality of the results produced by this test method are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this test method are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.NOTE 2: A 466.5 N-m tilting moment corresponds to a 22 mm eccentric on the AFLS1 or a 21° cone angle on the DAVII-HMS with an applied load of 10603 N (600 kPa at a 150 mm diameter specimen setting).1.1 This test method covers the procedure for the measurement of the Superpave Gyratory Compactor (SGC) internal angle of gyration using an instrument capable of simulating loading conditions similar to those created by an asphalt mixture specimen.1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. The value given in rotations per minute is provided for information regarding commonly used units.1.2.1 IEEE/ASTM SI 10, American National Standard for Metric Practice, offers guidance where use of decimal degrees for plane angles (versus radians) and revolutions per minute for rate of gyration (versus radians per second) is acceptable within the IEEE/ASTM SI 10 system when used on a minimal basis.1.3 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method, by a closer approach to engine cooling system conditions, provides better evaluation and selective screening of engine coolants than is possible from glassware testing (Test Method D1384). The improvement is achieved by controlled circulation of the coolant, by the use of automotive cooling system components, and by a greater ratio of metal surface area to coolant volume.4.2 Although this test method provides improved discrimination, it cannot conclusively predict satisfactory corrosion inhibition and service life. If greater assurance of satisfactory performance is desired, it should be obtained from full-scale engine tests (Test Method D2758) and from field testing in actual service (Practice D2847).4.3 Significance and interpretation of the test and its limitations are discussed further in Appendix X1.4.4 If this test method is used as a qualification test for Specification D3306 and Specification D4985, the recommended components listed in Section 5 shall be used. If it is not being used for such qualification purposes, then suitable substitution components may be used, if agreed upon between the contracting parties.1.1 This test method evaluates the effect of a circulating engine coolant on metal test specimens and automotive cooling system components under controlled, essentially isothermal laboratory conditions.1.2 This test method specifies test material, cooling system components, type of coolant, and coolant flow conditions that are considered typical of current automotive use.1.3 The values stated in foot-pound-second units are to be regarded as the standard. The values given in parentheses (SI units) are approximate equivalents for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 6.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This procedure can be used for (but is not limited to) the following applications:(1) support glass formulation development to make sure that processing criteria are met,(2) support production (for example, processing or troubleshooting), and(3) support model validation.1.1 These test methods cover procedures for determining the liquidus temperature (TL) of nuclear waste, mixed nuclear waste, simulated nuclear waste, or hazardous waste glass in the temperature range from 600 °C to 1600 °C. This test method differs from Practice C829 in that it employs additional methods to determine TL. TL is useful in waste glass plant operation, glass formulation, and melter design to determine the minimum temperature that must be maintained in a waste glass melt to make sure that crystallization does not occur or is below a particular constraint, for example, 1 volume % crystallinity or T1%. As of now, many institutions studying waste and simulated waste vitrification are not in agreement regarding this constraint (1).21.2 Three methods are included, differing in (1) the type of equipment available to the analyst (that is, type of furnace and characterization equipment), (2) the quantity of glass available to the analyst, (3) the precision and accuracy desired for the measurement, and (4) candidate glass properties. The glass properties, for example, glass volatility and estimated TL, will dictate the required method for making the most precise measurement. The three different approaches to measuring TL described here include the following: Gradient Temperature Furnace Method (GT), Uniform Temperature Furnace Method (UT), and Crystal Fraction Extrapolation Method (CF). This procedure is intended to provide specific work processes, but may be supplemented by test instructions as deemed appropriate by the project manager or principle investigator. The methods defined here are not applicable to glasses that form multiple immiscible liquid phases. Immiscibility may be detected in the initial examination of glass during sample preparation (see 9.3). However, immiscibility may not become apparent until after testing is underway.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The test requirements specified herein have been established for use in evaluating the forced-entry resistance characteristics of assemblies to be used in commercial, residential, schools, government, and other institutional installations where the risk of a single person active shooter attack is present.5.2 The procedures of this test method are intended to evaluate the ability to create an opening of sufficient size to permit passage of a test shape through it.5.3 The procedure presented herein is based on post-event examination and are not intended to be used to establish or confirm the absolute prevention of forced entries.1.1 This test method sets forth the requirements and testing procedures to test forced-entry-resistant building components, construction components, and specialty security equipment. This test method is intended primarily for manufacturers to test and rate their windows, doors, modular panels, glazings, and similar products to ensure that all manufactured products meet the necessary requirements for forced-entry protection after sustaining an active shooter assault.1.2 This test method is currently designed to simulate an active shooter weakening the system with repetitive shots followed by mechanically driven impact to simulate forced entry.1.3 This test method is not to be used for ballistic resistant glazing rating. Test projectiles are permitted to perforate the entire specimen. The test projectile firings are intended to simulate actions taken by an assailant to aid in the ability to gain entry to a facility.1.4 This is a laboratory test to be performed on full systems and therefore not applicable for field testing.1.5 All tests are executed on the exterior surface of the fenestration.1.6 Systems are required to be tested as complete units in a test frame or fielded conditions. Mulled systems must be tested in the mulled condition. Test results only apply to the component or system as tested. Once a system is tested and deemed to satisfy the requirements of this test method, no design change can be made without a retest except those that qualify under Annex A1 Substitution Criteria.1.7 Components (such as glazing, door leaves, etc.) may be tested in accordance with Appendix X1, receiving a capability statement for the component, but not a system rating per this standard.1.8 Window and door systems shall be rated to at least a minimum level of Test Methods F476, F588, or F842, or combinations thereof, as appropriate prior to commencing this test evaluation. This test does not dual certify to the above mentioned standards.1.9 The values stated in this standard are SI units with the exception of the nominal descriptors for tools.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This practice covers the exposure of plastics to a specific test environment. The test environment is a laboratory-scale reactor that simulates a landfill with enhanced biological activity. Biological activity is enhanced by adding moisture, recirculating leachate, and heating to 35°C. Plastic exposure occurs in the presence of a media undergoing anaerobic degradation. The standard media used in the practice simulates a municipal solid-waste stream. The practice allows for the use of other media to represent particular waste streams. This practice provides exposed specimens for further testing and for comparison with controls. This test environment does not necessarily reproduce conditions that could occur in a particular landfill. 1.2 Changes in the material properties of the plastic and controls should be determined using appropriate ASTM test procedures. Changes could encompass physical and chemical changes such as disintegration and degradation. 1.3 This practice may be used for different purposes. The interested parties therefore must select the following: exposure conditions from those allowed by this practice; criteria for a valid exposure, that is, minimum or maximum change requirements for the simulated landfill environment and controls; and magnitudes of material properties changes required for the plastic specimens. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 8. Note 1-There is no similar or equivalent ISO standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
35 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页