微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Dispersancy is the property that allows oil to suspend and carry away pollutants of diverse sources such as soot from combustion, metallic particles from wear, corrosion of mechanical parts, and insoluble products resulting from the aging of the oil.5.2 When poured on a specific filter paper, oil that is properly dispersing soot and other insolubles produces an evenly graduated spot. The distribution of the different zones (Fig. 1) will reflect the status of oil dispersancy.FIG. 1 Oil Spot Example and Scheme of the Distribution of the Different Zones5.3 While the oil spreads out on the filter paper, the oil carries contaminants, and due to the lamination phenomenon of the oil film, the particles of same size deposit on the paper on the same concentric zones.5.4 This test method provides a simple technique for condition monitoring of the dispersancy property of in-service lubricants.5.5 An oil that is properly dispersing soot and other insolubles produces an evenly graduated blotter (see Fig. 2—Spot 1). A ring of light debris on the outer circumference of the circular spot also indicates that the oil has retained its dispersancy properties.FIG. 2 Oil Spot Examples5.6 A blotter indicating a high soot load, but even graduation, suggests the oil is still fit for service, but should be watched closely for degradation (see Fig. 2—Spot 2).5.7 When dispersancy begins to fail, the insolubles begin to form a dense ring on the exterior of the absorbing oil drop as in Fig. 2—Spot 3. A brown or yellow stain on the blotter spot indicates oxidation.5.8 Fig. 2—Spot 4 indicates the characteristic dense black dot and sharp periphery that indicates sludge and the loss of dispersancy as the particles have settled in the center and the oil has wicked outward.5.9 From a maintenance perspective, when the ring begins to form around the exterior of the oil blotter, it is time to look at scheduling a drain. If the black dot is allowed to form, the situation is problematic because the undispersed portion of soot that has deposited upon surfaces will not be removed by the oil change. Often, several changes made at frequent intervals will be required to effectively scour the engine clean. Also, if dispersancy performance degrades at an unusually rapid pace, a more extensive review of combustion and ring performance should be undertaken.1.1 This test method covers a procedure for determination of the merit of dispersancy of diesel crankcase engine oils as well as other types of engine oils where pollutants of diverse sources such as soot from combustion, metallic particles from wear, corrosion of mechanical parts, and insoluble products resulting from the oxidation of the oil may contaminate the lubricant.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: It is not the intent of this test method to establish or recommend normal, cautionary, warning, or alert limits for any machinery. Such limits should be established in conjunction with advice and guidance from the machinery manufacturer and maintenance group.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 One of the factors affecting the image quality of a radiographic image is geometric unsharpness. The degree of geometric unsharpness is dependent upon the focal spot size of the radiation source, the distance between the source and the object to be radiographed, the distance between the object to be radiographed and the image plane (film, imaging plate, Digital Detector Array (DDA), or radioscopic detector). This test method allows the user to determine the effective focal spot size (dimensions) of the X-ray source. This result can then be used to establish source to object and object to image detector distances appropriate for maintaining the desired degree of geometric unsharpness or maximum magnification possible, or both, for a given radiographic imaging application. The accuracy of this method is dependent upon the spatial resolution of the imaging system, magnification, and signal-to-noise of the resultant images.1.1 The image quality and the resolution of X-ray images highly depend on the characteristics of the focal spot. The imaging qualities of the focal spot are based on its two dimensional intensity distribution as seen from the imaging place.1.2 This test method provides instructions for determining the effecting size (dimensions) of mini and micro focal spots of industrial X-ray tubes. It is based on the European standard, EN 12543–5, Non-destructive testing - Characteristics of focal spots in industrial X-ray systems for use in non-destructive testing - Part 5: Measurement of the effective focal spot size of mini and micro focus X-ray tubes.1.3 This standard specifies a method for the measurement of effective focal spot dimensions from 5 up to 300 μm of X-ray systems up to and including 225 kV tube voltage, by means of radiographs of edges. Larger focal spots should be measured using Test Method E1165 Standard Test Method for Measurement of Focal Spots of Industrial X-Ray Tubes by Pinhole Imaging.1.4 The same procedure can be used at higher kilovoltages by agreement, but the accuracy of the measurement may be poorer.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 This test method is intended specifically for testing the porcelain enamel finish on stoves, table tops, sinks, and other sanitary ware, laundry appliances, architectural units, etc., where the surface may come in contact with food acids at room temperature.3.2 Citric acid has been chosen as the test medium because it is one of the most common of the food acids and will generally provide a measurable result in its action on porcelain enamel.1.1 This test method covers a procedure for evaluating porcelain enamels in their resistance to citric acid exposure at room temperature. No attempt is made to categorize porcelain enamels as to their acid-resistance or non acid-resistance properties, since the requirements in the several branches of the industry differ.1.2 The test method is applicable for ware of various shapes providing they contain a substantially flat area approximately 50 mm in diameter.1.3 The test method is not applicable to finishes on chemical and hospital ware, which may come in contact with strong mineral acids, nor to cooking utensils, which may come in prolonged contact with hot acid solutions.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 A coating of terne metal on iron or steel articles is intended to provide drawability, solderability, or corrosion resistance, or combination thereof, which can require different amounts of coating. Specifications for terne-coated sheets frequently provide for these different classes (weights) of coating so that purchasers can select that most suitable for their needs. This test method provides a means of determining the weight of coating for comparison with the material specification requirements. 1.1 This test method covers the determination of the weight and composition of coating on terne sheet by the triple-spot method. The following three procedures are described: 1.1.1 Procedure A—Stripping with sulfuric acid. 1.1.2 Procedure D—Stripping with hydrochloric acid and antimony trichloride. 1.1.3 Procedure E—Stripping with hydrobromic acid-bromine solution. Note 1—Procedure B (Electrolytic Stripping) and Procedure C (Stripping with Silver Nitrate Solution), formerly in this test method, were discontinued because lack of usage. The designation for Procedure D and Procedure E are retained to avoid future confusion when reference is made only to the procedure designation. 1.2 If the percent of tin in the coating is required, stripping with hydrobromic acid-bromine is the preferred procedure. Steel with a predeposited electrolytic nickel coating requires a two-stage stripping method to determine total tin content. If both the tin and lead percentage are required, stripping with sulfuric acid is recommended, but caution is advised since the sulfuric acid procedure has been found to produce high tin results (see Section 11). 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazards statements, see Section 5, Note 2, and Section 17.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The four procedures in this test method are used alone or in combination to identify fuels or blends that could result in excessive centrifuge loading, strainer plugging, tank sludge formation, or similar operating problems.5.2 A spot rating of Number 3 or higher on a finished fuel oil by the cleanliness procedure indicates that the fuel contains excessive suspended solids and is likely to cause operating problems.5.3 Although a fuel may test clean when subjected to the cleanliness procedures (manual and automated), suspended solids can precipitate when the fuel is mixed with a blend stock. Evidence of such incompatibility is indicated by a spot rating of Number 3 or higher in the compatibility procedures (manual and automated).1.1 This test method covers separate procedures for determining the cleanliness of residual fuel oil and the compatibility of a residual fuel oil with a blend stock. It is applicable to residual fuel oils with viscosities up to 50 cSt (1 cSt = 1 mm2s) at 100 °C. This test method describes two protocols: one manual and one automated.NOTE 1: This test method has not been evaluated for heavy distillate having the propensity to leave a wax sediment on the filter paper and contain no residual asphaltene.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

2.1 This practice provides the procedure to locate the thinnest portions of the zinc coating on newly coated items (see Appendix X1) produced to a product specification under the jurisdiction of ASTM Committee A05 and its subcommittees as designated by a purchaser in a purchase order or contract.2.2 Limitations of the Practice: 2.2.1 The use of this practice with zinc coating deposited through different processes (such as hot dipped, electroplated, or sprayed) requires caution in interpretation since the end point may vary considerably between different zinc-coating systems.2.2.2 Variations in coating thickness can be due to the process by which the zinc is applied or by the geometry of the part that is coated. During hot-dip galvanizing, the coating thickness is affected by the drainage pattern of the molten zinc, while during zinc spraying (metallizing), coating thickness can be dependent on the operator's manipulation of the spray nozzle. The geometry of the part can also influence coating thickness especially during hot-dip galvanizing, where peaks and valleys on the part can cause molten zinc to build up or thin out.2.2.3 Excluded from this practice is sheet steel from hot-dip or electrocoating lines as the sheet products are normally subject to additional forming after the coating process. Also excluded from this practice are all zinc-coated wire and wire products either continuously or batch coated before or after forming. Caution—Past research (dating from around 1963) has indicated that this practice can be influenced by operator technique. Variations can be due to the difference in hand pressure used to wipe the sample or the inability of the operator to recognize the end point.2.2.4 This technique removes the zinc coating on the surface of the part being examined. This coating removal makes the part or article unusable after testing. This technique may not be suitable for parts fabricated into their final configuration, since they will not be acceptable after testing.2.2.5 The results of this practice should not be used to predict the service life of the galvanized coating. Other factors such as location of the thinnest spot, orientation of the part in service, and specific environmental conditions will also affect the service life.2.3 Examples of coated articles that can be tested are: electrical metallic tubing and rigid conduit pipe, castings and forgings, and structural steel; on special hardware, such as pole line, builder's, and farm implement hardware; bolts, nuts, screws, and other miscellaneous general hardware.1.1 This practice covers the procedure for locating, by the use of a solution of copper sulfate, the thinnest spot in a zinc coating (hot dipped, electroplated, or sprayed) on iron or steel articles that are coated after the shape is produced by casting, drawing, pressing, or other forming methods.1.2 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

3.1 The specific chemical(s) selected is at the discretion of the customer and vendor.3.2 Variations in results may be expected due to different rates of chemical evaporation. The use of a watchglass with sealed edges is intended to curtail or eliminate evaporation of the chemical.1.1 This test method covers the testing of any surface that may be exposed to liquid chemical(s).1.2 This test method is not designed for immersion testing conditions or material edge attack.1.3 This test method is designed for evaluation of visual changes. In certain instances physical (non-visual) changes may occur and functional testing may be appropriate.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The thickness of a decorative chromium coating is often critical to its performance.4.2 This procedure is useful for an approximate determination when the best possible accuracy is not required. For more reliable determinations, the following methods are available: Methods B504, B568, and B588.4.3 This test assumes that the rate of dissolution of the chromium by the hydrochloric acid under the specified conditions is always the same.1.1 This guide covers the use of the spot test for the measurement of thicknesses of electrodeposited chromium coatings over nickel and stainless steel with an accuracy of about ±20 % (Section 9). It is applicable to thicknesses up to 1.2 μm.2NOTE 1: Although this test can be used for coating thicknesses up to 1.2 μm, there is evidence that the results obtained by this method are high at thicknesses greater than 0.5 μm.3 In addition, for coating thicknesses above 0.5 μm, it is advisable to use a double drop of acid to prevent depletion of the test solution before completion of the test.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The AE produced during the production of a spot-weld can be related to weld quality parameters such as the strength and size of the nugget, the amount of expulsion, and the amount of cracking. Therefore, in-process AE monitoring can be used both as an examination method, and as a means for providing feedback control.1.1 This practice describes procedures for the measurement, processing, and interpretation of the acoustic emission (AE) response associated with selected stages of the resistance spot-welding process.1.2 This practice also provides recommendations for feedback control by utilizing the measured AE response signals during the spot-welding process.1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
26 条记录,每页 15 条,当前第 1 / 2 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页