微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 345元 / 折扣价: 294

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏
ASTM D1721-97(2007) Standard Test Method for Permanganate Time of Tricresyl Phosphate (Withdrawn 2012) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

Impurities such as phenols, if present in tricresyl phosphate, will react with potassium permanganate, reducing it to manganese dioxide. In the permanganate test, the color of the test solution is observed at the end of a 30-min period, and if the pink color is still present, the sample is considered substantially free of oxidizable impurities.The results of this measurement can be used for specification acceptance.1.1 This test method covers the detection in tricresyl phosphate of the presence of impurities that reduce potassium permanganate.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 6.1.3 For hazard information and guidance, see the supplier's Material Safety Data Sheet.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This test method details the standard procedure for measuring the viscosity of resin solutions. The apparatuses required here are constant-temperature water bath, wide-mouthed screw capped bottles, cellophane sheets, No. 2 short taper corks, viscosity tube holder, bottle shaker, timing device, and viscosity tubes. Solid resins are dissolved in organic solvents by cold-cut or hot-cut methods in the laboratory. The viscosity of such prepared solutions, or of commercial solutions of resins is then determined by the bubble time method. The bubble seconds are approximately equal to stokes.1.1 This practice provides instructions for preparing resin solutions viscosity measurement by bubble time method.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined. The four water treatment levels may be tested individually, all four simultaneously, or any combination of multiple water treatment levels.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 It is normal for some of the combustion products of an internal combustion engine to penetrate into the engine lubricant and be retained in it.5.2 When an engine is run for a period of time and then stored over a long period of time, the by-products of combustion might be retained in the oil in a liquefied state.5.3 Under these circumstances, precipitates can form that impair the filterability of the oil the next time the engine is run.5.4 This test method subjects the test oil and the new oil to the same treatments such that the loss of filterability can be determined.5.5 Reference oils, on which the data obtained by this test method is known, are available.5.6 This test method requires that a reference oil also be tested and results reported. Two oils are available, one known to give a low and one known to give a high data value for this test method.NOTE 1: When the new oil test results are to be offered as candidate oil test results for a specification, such as Specification D4485, the specification will state maximum allowable loss of filterability (flow reduction) of the test oil as compared to the new oil.1.1 This test method covers the determination of the tendency of an oil to form a precipitate that can plug an oil filter. It simulates a problem that may be encountered in a new engine run for a short period of time, followed by a long period of storage with some water in the oil.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The purpose of this test method is to establish whether a cement complies with a specification limit on Gillmore time of setting.1.1 This test method covers the determination of the time of setting of hydraulic-cement paste by means of the Gillmore needles.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.)21.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1. Scope This clause of Part 1 is replaced as follows: 1.1 In general, this standard applies to timers and time switches for household and similar use that may use electricity, gas, oil, solid fuel, solar thermal energy, etc. or a combination there

定价: 1001元 / 折扣价: 851

在线阅读 收 藏

5.1 This procedure may be used to assess the in vitro reduction of a microbial population of test organisms after exposure to a test material.1.1 This guide covers an example of a method that measures the changes in a population of aerobic microorganisms within a specified sampling time when antimicrobial test materials are present.1.1.1 Several options for organism selection and growth, inoculum preparation, sampling times and temperatures are provided.1.1.2 When the technique is performed as a specific test method, it is critical that the above mentioned variables have been standardized.1.1.3 Antimicrobial activity of specific materials, as measured by this technique, can vary significantly depending on variables selected.1.1.4 Test Method E2783 may be referenced as an example of using fixed conditions and set variables to evaluate antimicrobial efficacy of water-miscible compounds.1.1.5 This guide serves as a general teaching document for evaluating the antimicrobial activity using a variety of conditions to offer the flexibility needed in test conditions to cover a broad range of microorganisms and test substances.1.1.6 It is important to understand the limitations of in vitro tests, especially comparisons of results from tests performed with different parameters. As an example, test results of microorganisms requiring growth supplements or special incubation conditions may not be directly comparable to organisms evaluated without those stated conditions.1.2 Knowledge of microbiological techniques is required for this procedure.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method measures the time to extrapolated onset of an exothermic reaction under constant temperature (isothermal) conditions for reactions which have an induction period, for example, those which are catalytic, autocatalytic, or accelerating in nature or which contain reaction inhibitors.5.2 The RIT determined by this test method is an index measurement that is useful for comparing one material to another at the test temperature of interest and in the same apparatus type only.5.3 This test method is a useful adjunct to dynamic thermal tests, such as Test Method E537, which are performed under conditions in which the sample temperature is increased continuously at constant rate. Results obtained under dynamic test conditions may result in higher estimates of temperature at which an exothermic reaction initiates because the detected onset temperature is dependent upon the heating rate and because dynamic methods allow insufficient time for autocatalytic reactions to measurably affect the onset temperature.5.4 RIT values determined under a series of isothermal test conditions may be plotted as their logarithm versus the reciprocal of the absolute temperature to produce a plot, the slope of which is proportional to the activation energy of the reaction as described in Test Methods E2070.5.5 This test method may be used in research and development, manufacturing, process and quality control, and regulatory compliance.5.6 This test method is similar to that for oxidation induction time (OIT) (for example, Specification D3350 and Test Methods D3895, D4565, D5483, D6186, and E1858) where the time to the oxidation reaction under isothermal test conditions is measured. The OIT test method measures the presence of antioxidant packages and is a relative measurement of a material’s resistance to oxidation.1.1 This test method describes the measurement of reaction induction time (RIT) of chemical materials that undergo exothermic reactions with an induction period. The techniques and apparatus described may be used for solids, liquids, or slurries of chemical substances. The temperature range covered by this test method is typically from ambient to 400 °C. This range may be extended depending upon the apparatus used.1.2 The RIT is a relative index value, not an absolute thermodynamic property. As an index value, the RIT value may change depending upon experimental conditions. A comparison of RIT values may be made only for materials tested under similar conditions of apparatus, specimen size, and so forth. Furthermore, the RIT value may not predict behavior of large quantities of material.1.3 The RIT shall not be used by itself to establish a safe operating temperature. It may be used in conjunction with other test methods (for example, Test Methods E487 and E537, and Guide E1981) as part of a hazard analysis of a particular operation.1.4 This test method may be used for RIT values greater than 15 min (as relative imprecision increases at shorter periods).1.5 This test method is used to study catalytic, autocatalytic, and accelerating reactions. These reactions depend upon time as well as temperature. Such reactions are often studied by fixing one experimental parameter (that is, time or temperature) and then measuring the other parameter (that is, temperature or time). This test method measures time to reaction onset detection under isothermal conditions. It is related to Test Method E487 that measures detected reaction onset temperature under constant time conditions1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this test method.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Expiration dates are often marked on the packages of perishable products to indicate the presumed end of their shelf lives. Since the shelf lives of most perishable products are temperature dependent, the expiration date is determined by assuming the product will be kept within a prescribed temperature range for its entire life. A problem with this method is that there is no way to determine if the shelf life of a product has been shortened by exposure to a higher temperature. A time-temperature indicator solves this problem when attached to the package because it reaches its end point sooner when exposed to a higher temperature.3.2 In order to directly indicate the end of the shelf life, the time-temperature indicator characteristics should be matched as closely as possible to the quality characteristics of the product. When kept at the standard storage temperature for the product, the indicator should reach its end point at the same time as the product's shelf life. In addition, to determine the accuracy of the match at other temperatures, the change of shelf life with temperature should be known for both the product and the indicator. The Arrhenius relationship is a common and convenient method of describing the change of shelf life with temperature. In cases where it is not applicable, individual time-temperature points for the product may be established and an approximate correlation with the TTI obtained.3.3 When attached to the package of a perishable product, a time-temperature indicator may supplement, or in some cases replace, the expiration date code. The addition of a TTI provides a greater level of confidence that the perishable product is within its shelf life because it responds to the actual temperature conditions to which the product has been exposed.3.4 In the case of minimally processed refrigerated foods, the rapid growth of pathogenic bacteria at elevated temperatures may pose a serious health hazard even before the deterioration of the quality of the product becomes apparent to the consumer. In this case, an expiration date may be used for storage at the standard temperature, while a threshold-temperature TTI is used to indicate the exposure to temperatures at which growth becomes measurable. It is also possible to use a dual-function TTI, in which case the standard TTI would indicate the shelf life at the correct storage temperature while the threshold-temperature part would indicate the exposure to higher temperatures.1.1 This guide covers information on the selection of commercially available time-temperature indicators (TTIs) for noninvasive external package use on perishable products, such as food and pharmaceuticals. When attached to the package of a perishable product, TTIs are used to measure the combined time and temperature history of the product in order to predict the remaining shelf life of the product or to signal the end of its usable shelf life. It is the responsibility of the processor of the perishable product to determine the shelf life of a product at the appropriate temperatures and to consult with the indicator manufacturer to select the available indicator which most closely matches the quality of the product as a function of time and temperature.NOTE 1: Besides time-temperature indicator, TTI is also an abbreviation for time-temperature monitor and time-temperature integrator.1.2 Time-temperature indicators may be integrated into a Hazard Analysis and Critical Control Point (HACCP) plan. Appropriate instructions should be established for handling products for which either the indicator has signaled the end of usable shelf life or the shelf life of the product at its normal storage temperature has been reached.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Use of the SIM decreases the time required for creep to occur and the obtaining of the associated data.5.2 The statements set forth in 1.5 are very important in the context of significance and use, as well as scope of the standard.5.3 Creep test data are used to calculate the creep modulus of materials as a function of time. These data are then used to predict the long-term creep deformation expected of geosynthetics used in drainage applications.NOTE 1: Currently, SIM testing has focused mainly on geonets made from high-density polyethylene. Additional testing on other materials is ongoing.5.4 R+H testing is done to establish the range of creep strains experienced in the brief period of very rapid response following the peak of the load ramp.1.1 This test method covers accelerated testing for compressive creep properties using the stepped isothermal method (SIM).1.2 The test method is focused on geosynthetic drainage materials such as HDPE geonet specimens.1.3  The SIM tests are laterally unconfined tests based on time-temperature superposition procedures.1.4 Ramp and hold (R+H) tests may be completed in conjunction with SIM tests. They are designed to provide additional estimates of the initial rapid compressive creep strain levels appropriate for the SIM results.1.5 This method can be used to establish the sustained load compressive creep characteristics of a geosynthetic that demonstrates a relationship between time-dependent behavior and temperature. Results of this method are to be used to augment results of compressive creep tests performed at 20 ± 1 °C and may not be used as the sole basis for determination of long-term compressive creep behavior of geosynthetic material.1.6 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method determines the time of setting of grout mixed to the fluid consistency required for its use in PA concrete.5.2 The time of setting is also useful in determining the acceptability of components of grout that must be mixed to the fluid consistency required for production of PA concrete.1.1 This method covers the determination test of time of setting of hydraulic cement grout mixtures used in preplaced-aggregate (PA) concrete using the Vicat apparatus.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.21.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
89 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页