微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 384元 / 折扣价: 327 加购物车

在线阅读 收 藏

5.1 This practice is for use by water utilities or other owners, contractors, specifiers, regulatory agencies, inspection organizations or other users who are involved in the rehabilitation of potable water pipelines and wish to specify or permit the use of spray-applied polymeric liners.1.1 This practice describes the procedures for the rehabilitation of potable water pipes using spray-applied polymeric coatings for pipelines constructed of iron, steel, or asbestos cement using resin materials that have been certified in accordance with NSF/ANSI 61 for the in-situ lining of potable water mains.1.2 This practice applies to potable water pipelines constructed of metallic or non-metallic piping in the diameter ranges of 4 in. (10 cm) to 36 in. (90 cm). Specialist advice should be sought from the product manufacturer for polymeric linings applied to other nonmetallic surfaces and for applied linings outside of these diametric limitations.1.3 This practice applies to in-situ pipes requiring AWWA Class I (nonstructural) linings through Class III (semi-structural) linings (see AWWA M28).1.4 This practice does not address lining system design. Assistance with lining system design is available from lining system manufacturers and operators who have been professionally trained and experienced in polymeric liner design.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers the requirements and test methods for materials, dimensions, workmanship, extrusion quality, and form of marking for extruded poly(vinyl chloride) (PVC) profile strips used for field fabrication of PVC liners for existing man-entry sewer and conduit rehabilitation. The strips shall be subjected to acetone immersion, elasticity, and hydrostatic pressure tests in the standard laboratory atmosphere under specific temperature and relative humidity conditions to determine conformance to extrusion quality, flexural rigidity, and joint leakage requirements, respectively. The extruded profile strips shall be homogeneous throughout and free from visible cracks, holes, foreign inclusions, or other injurious defects and shall be as uniform as commercially practical in color, opacity, density, and other physical properties.1.1 This specification covers requirements and test methods for materials, dimensions, workmanship, extrusion quality, and a form of marking for extruded poly (vinyl chloride) (PVC) profile strips used for field fabrication of PVC liners for existing man-entry (36 in. to 144 in. (900 mm to 3650 mm) in vertical dimension) sewer and conduit rehabilitation.1.2 Profile strip produced to this specification is for use in field fabrication of PVC liners in non-pressure pipe and conduit rehabilitation where the liner is installed into the existing sewer or conduit and the annular space between the liner and the existing sewer or conduit is grouted with cementitious grout.NOTE 1: The practice for the installation of PVC liner covered by this specification is Practice F1698.1.3 This specification includes extruded profile strips made only from materials specified in 6.1.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification establishes the criteria for acceptance, prior to installation, of clay flue liners and chimney pots used for conveying hot gases in masonry chimneys. The liners and pots shall be manufactured from fire clay, shale, surface clay, or a combination of these materials that when formed and fired to suitable temperatures, shall yield a product that is strong, durable, serviceable, and conforms to this specification. The liners and pots shall be subjected to absorption, acid resistance, and freeze-thaw cycle tests.1.1 This specification establishes the criteria for acceptance, prior to installation, of clay flue liners and chimney pots used for conveying hot gases in masonry chimneys.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 For installation of clay flue liners, see Practice C1283.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The ability to maintain design function (for example, barrier) or design properties (for example, peel strength, chemical resistance, etc.), or both, of a geosynthetic clay liner may be affected by damage to the physical structure of the GCL due to the rigors of field installation. The effect of damage may be assessed by analyzing specimens cut from sample(s) retrieved after installation in a representative test pad. Analysis may be performed with visual examination or laboratory testing of specimens from the control sample(s), and from the exhumed sample(s).5.2 A uniform practice for installing and retrieving representative sample(s) from a test pad is needed to assess installation damage using project-specific or generally accepted, representative materials and procedures. Damage of a specific grade and type of GCL under specific installation procedures may be assessed with sample(s) exhumed from a full-scale test pad.1.1 This practice covers standardized procedures for obtaining samples of geosynthetic clay liners (GCLs) from a test pad for use in assessment of the effects immediately after installation caused only by the installation techniques. The assessment may include physical testing. This practice is applicable to GCLs only.1.2 This practice is limited to full-scale test pads, and does not address laboratory modeling of field conditions. This practice does not address which test method(s) to use for quantifying installation damage.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice provides a procedure by which samples of GCL should be obtained for laboratory testing. The practice applies to materials obtained prior to installation (either at a job site or at a production facility) or exhumed material after installation.4.2 Only GCL samples obtained in accordance with 5.1 of this practice will be considered representative of the actual manufactured GCL for quality assurance/quality control (QA/QC) purposes.4.3 The quantity of GCL received by the laboratory should be sufficient for the preparation of several representative test specimens for the standardized physical, hydraulic, and mechanical tests to be performed on the GCLs.4.4 The procedures in this practice should be used by plant and field personnel for obtaining GCL samples for laboratory testing.1.1 This practice covers procedures for sampling geosynthetic clay liners (GCLs) for the purpose of laboratory testing. These procedures are designed to ensure that representative samples are obtained and properly packaged for submittal to a testing laboratory.1.2 The procedures in this practice may be applied to either samples of unhydrated GCLs obtained at the project site prior to installation (or at the production facility, prior to shipment to the project site) or samples exhumed from a project site after installation.1.3 It is assumed that the number of samples to be obtained has already been determined in the project specification, standard test method, or by prior agreement between the purchaser and seller. This practice covers only the methods for obtaining a pre-arranged number of samples and does not describe methods for obtaining individual specimens from the sample.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This test method applies to one-dimensional, laminar flow of aqueous solutions, such as chemical solutions, landfill leachate, and contaminated water (from here on referred to as “test liquid”), through saturated/hydrated GCL specimen that is consolidated and permeated under a prescribed or requested set of conditions.4.2 This test method assumes that Darcy’s law is valid and that the hydraulic conductivity is essentially unaffected by hydraulic gradient. The validity of Darcy’s law may be evaluated by measuring the hydraulic conductivity of the specimen at three different hydraulic gradients; if all measured values are similar (within about 25 %), then Darcy's law may be taken as valid. However, when the hydraulic gradient acting on a test specimen is changed, the state of stress will also change and, if the specimen is compressible, the volume of the specimen will change. Thus, some change in hydraulic conductivity may occur when the hydraulic gradient is altered, even in cases where Darcy's law is valid.4.3 This test method provides tools for determining flux and hydraulic conductivity values for a given GCL under the following two different scenarios, which should be specified by the requester:4.3.1 Scenario 1 – Hydrated/Saturated with Water Prior to Contact with Test Liquid—This scenario simulates the field conditions where the GCL is well hydrated with water prior to contact with actual test liquid. It should be noted that initial degree of saturation/hydration greatly affects the hydraulic properties of a GCL product. The test has two phases: (Phase 1) hydrate, saturate, consolidate, and permeate with water as Test Liquid 1, and (Phase 2) switch to permeation with test liquid as Test Liquid 2.4.3.2 Scenario 2 – Hydrated/Saturated with Test Liquid (Worst Case)—This scenario simulates the field conditions where the GCL is in contact with test liquid prior to being fully hydrated with water. It should be noted that this scenario may result in higher flux and hydraulic conductivity values compared to Scenario 1, as chemicals present in test liquid may alter the hydration and hydraulic properties of a GCL product.4.4 The apparatus used in this test method is commonly used to determine the hydraulic conductivity of soil specimens. However, flux values measured in this test are typically much lower than those commonly measured for most natural soils. It is essential that the leakage rate of the apparatus in this test be less than 10 % of the flux.1.1 This test method covers laboratory measurement of both flux and hydraulic conductivity (also referred to as coefficient of permeability) of geosynthetic clay liner (GCL) specimens permeated with chemical solutions and leachates utilizing a flexible wall permeameter. For test measurement of index hydraulic properties of geosynthetic clay liners, refer to Test Method D5887/D5887M. For hydraulic conductivity compatibility of soils with aqueous chemical solutions and leachates, refer to Test Method D7100.1.2 This test method may be utilized with GCL specimens that have a hydraulic conductivity less than or equal to 1 × 10–5 m/s (1 × 10–3 cm/s).1.3 This test method is applicable to GCL products having geotextile backing(s). It is not applicable to GCL products with geomembrane backing(s), geofilm backing(s), or polymer coating backing(s).1.4 This test method allows the requester to evaluate the hydraulic properties of a GCL with site-specific or laboratory-prepared solution under different test conditions; thus, the test method also may be used to check performance or conformance, or both.1.5 The values stated in SI units are to be regarded as the standard, unless other units are specifically given. By tradition in U.S. practice, hydraulic conductivity is reported in centimeters per second, although the common SI units for hydraulic conductivity are meters per second.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
38 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页