微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 The useful life of photovoltaic modules may depend on their ability to withstand repeated temperature cycling with varying amounts of moisture in the air. These test methods provide procedures for simulating the effects of cyclic temperature and humidity environments. An extended duration damp heat procedure is provided to simulate the effects of long term exposure to high humidity.4.2 The durations of the individual environmental tests are specified by use of this test method; however, commonly used durations are 50 and 200 thermal cycles, 10 humidity-freeze cycles, and 1000 h of damp heat exposure, as specified by module qualification standards such as IEC 61215 and IEC 61646. Longer durations can also be specified for extended duration module stress testing.4.3 Mounting—Test modules are mounted so that they are electrically isolated from each other, and in such a manner to allow free air circulation around the front and back surfaces of the modules.4.4 Current Biasing: 4.4.1 During the thermal cycling procedure, test modules are operated without illumination and with a forward-bias current equal to the maximum power point current at standard reporting conditions (SRC, see Test Methods E1036) flowing through the module circuitry.4.4.2 The current biasing is intended to stress the module interconnections and solder bonds in ways similar to those that are believed to be responsible for fill-factor degradation in field-deployed modules.4.5 Effects of Test Procedures—Data generated using these test methods may be used to evaluate and compare the effects of simulated environment on test specimens. These test methods require determination of both visible effects and electrical performance effects.4.5.1 Effects on modules may vary from none to significant changes. Some physical changes in the module may be visible when there are no apparent electrical changes in the module. Similarly, electrical changes may occur with no visible changes in the module.4.5.2 All conditions of measurement, effects of cycling, and any deviations from this test method must be described in the report so that an assessment of their significance can be made.4.6 Sequencing—If these test methods are performed as part of a combined sequence with other environmental or non-environmental tests, the results of the final electrical tests (6.2) and visual inspection (6.3) determined at the end of one test may be used as the initial electrical tests and visual inspection for the next test; duplication of these tests is not necessary unless so specified.1.1 These test methods provide procedures for stressing photovoltaic modules in simulated temperature and humidity environments. Environmental testing is used to simulate aging of module materials on an accelerated basis.1.2 Three individual environmental test procedures are defined by these test methods: a thermal cycling procedure, a humidity-freeze cycling procedure, and an extended duration damp heat procedure. Electrical biasing is utilized during the thermal cycling procedure to simulate stresses that are known to occur in field-deployed modules.1.3 These test methods define mounting methods for modules undergoing environmental testing, and specify parameters that must be recorded and reported.1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods.1.5 Any of the individual environmental tests may be performed singly, or may be combined into a test sequence with other environmental or non-environmental tests, or both. Certain pre-conditioning tests such as annealing or light soaking may also be necessary or desirable as part of such a sequence. The determination of any such sequencing and pre-conditioning is beyond the scope of this test method.1.6 These test procedures are limited in duration and therefore the results of these tests cannot be used to determine photovoltaic module lifetimes.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The design of a PV module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the array. In addition, the insulation system provides a barrier to electrochemical corrosion, and insulation flaws can result in increased corrosion and reliability problems. This test method describes a procedure for verifying that the design and construction of the array provides adequate electrical isolation through normal installation and use. At no location on the array should the PV-generated electrical potential be accessible, with the obvious exception of the output leads. The isolation is necessary to provide for safe and reliable installation, use, and service of the PV system.5.2 This test method describes a procedure for determining the ability of the array to provide protection from electrical hazards. Its primary use is to find insulation flaws that could be dangerous to persons who may come into contact with the array. Corrective action taken to address such flaws is beyond the scope of this test method.5.3 This procedure may be specified as part of a series of acceptance tests involving performance measurements and demonstration of functional requirements. Large arrays can be tested in smaller segments. The size of the array segment to be tested (called “circuit under test” in this test method) is usually selected at a convenient break point and sized such that the expected resistance or current reading is within the middle third of the meter's range.5.4 Insulation leakage resistance and insulation leakage current leakage are strong functions of array dimensions, ambient relative humidity, absorbed water vapor, and other factors. For this reason, it is the responsibility of the user of this test method to specify the minimum acceptable leakage resistance for this test.5.4.1 Even though a numerical quantity is specified, actual results are often pass-fail in that when a flaw is found, the leakage current changes from almost nothing to the full scale value on the meter.5.5 The user of this test method must specify the option used for connection to the array during the test. The short-circuited option requires a shorting device with leads to connect the positive and negative legs of the circuit under test. For larger systems, where the shorting device may have to be rated for high current and voltage levels, the open-circuited option may be preferred. The open-circuited option requires the user to correct readings to account for the PV-generated voltage, and the procedure for making such corrections is beyond the scope of this test method. The short-circuited option may be easier for small systems where the voltage and current levels are low and the distance between the plus and minus leads of the circuit under test are small. The short-circuited option minimizes the chance of exposing array components to voltage levels above those for which they are rated.1.1 This test method covers a procedure to determine the insulation resistance of a photovoltaic (PV) array (or its component strings), that is, the electrical resistance between the array's internal electrical components and is exposed, electrically conductive, non-current carrying parts and surfaces of the array.1.2 This test method does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Photovoltaic modules are electrical dc sources. dc sources have unique considerations with regards to arc formation and interruption, as once formed, the arc is not automatically interrupted by an alternating current. Solar modules are energized whenever modules in the string are illuminated by sunlight, or during fault conditions.5.2 With the rapid increase in the number of photovoltaic system installations, this guide attempts to increase awareness of methods to reduce the risk of fire from photovoltaic systems.5.3 This guide is intended for use by module manufacturers, panel assemblers, system designers, installers, and specifiers.5.4 This guide may be used to specify minimum requirements. It is not intended to capture all conditions or scenarios which could result in a fire.1.1 This guide describes basic principles of photovoltaic module design, panel assembly, and system installation to reduce the risk of fire originating from the photovoltaic source circuit.1.2 This guide is not intended to cover all scenarios which could lead to fire. It is intended to provide an assembly of generally accepted practices.1.3 This guide is intended for systems which contain photovoltaic modules and panels as dc source circuits, although the recommended practices may also apply to systems utilizing ac modules.1.4 This guide does not cover fire suppression in the event of a fire involving a photovoltaic module or system.1.5 This guide does not cover fire emanating from other sources.1.6 This guide does not cover mechanical, structural, electrical, or other considerations key to photovoltaic module and system design and installation.1.7 This guide does not cover disposal of modules damaged by a fire, or other material hazards related to such modules.1.8 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1. Scope 1.1 This Standard provides a method of presenting technical information relating to the selection of storage batteries for photovoltaic systems and to the precision of that information. Note: A distinguishing feature of photovoltaic (PV) pow

定价: 455元 / 折扣价: 387

在线阅读 收 藏

4.1 Environmental stress tests, such as those listed in 1.2, are normally used to evaluate module designs prior to production or purchase. These test methods rely on performing electrical tests and visual inspections of modules before and after stress testing to determine the effects of the exposures.4.2 Effects of environmental stress testing may vary from no effects to significant changes. Some physical changes in the module may be visible when there are no measurable electrical changes. Similarly, electrical changes in the module may occur with no visible changes.4.3 It is the intent of this practice to provide a recognized procedure for performing visual inspections and to specify effects that should be reported.4.4 Many of these effects are subjective. In order to determine if a module has passed a visual inspection, the user of this practice must specify what changes or conditions are acceptable. The user may have to judge whether changes noted during an inspection will limit the useful life of a module design.1.1 This practice covers procedures and criteria for visual inspections of photovoltaic modules.1.2 Visual inspections of photovoltaic modules are normally performed before and after modules have been subjected to environmental, electrical, or mechanical stress testing, such as thermal cycling, humidity-freeze cycling, damp heat exposure, ultraviolet exposure, mechanical loading, hail impact testing, outdoor exposure, or other stress testing that may be part of the photovoltaic module testing sequence.1.3 This practice does not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of this practice.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The design of a photovoltaic module or system intended to provide safe conversion of the sun's radiant energy into useful electricity must take into consideration the possibility of hazard should the user come into contact with the electrical potential of the module or system. In addition, the insulation system provides a barrier to electrochemical corrosion, and insulation flaws can result in increased corrosion and reliability problems. These test methods describe procedures for verifying that the design and construction of the module provides adequate electrical isolation through normal installation and use. At no location on the module should the PV-generated electrical potential be accessible, with the obvious exception of the output leads. This isolation is necessary to provide for safe and reliable installation, use, and service of the photovoltaic system.4.2 This test method describes a procedure for determining the ability of the module to provide protection from electrical hazards. Its primary use is to find insulation flaws that could be dangerous to persons who may come into contact with the module, especially when modules are wet. For example, these flaws could be small holes in the encapsulation that allow hazardous voltages to be accessible on the outside surface of a module after a period of high humidity.4.3 Insulation flaws in a module may only become detectable after the module has been wet for a certain period of time. For this reason, these procedures specify a minimum time a module must be immersed prior to the insulation integrity measurements.4.4 Electrical junction boxes attached to modules are often designed to allow liquid water, accumulated from condensed water vapor, to drain. Such drain paths are usually designed to permit water to exit, but not to allow impinging water from rain or water sprinklers to enter. It is important that all surfaces of junction boxes be thoroughly wetted by spraying during the tests to enable these protective drain features to be properly tested. Therefore, drain holes should not be plugged or otherwise protected.4.5 These procedures may be specified as part of a series of qualification tests involving performance measurements and demonstration of functional requirements. Because insulation leakage resistance and insulation current leakage are strong functions of module dimensions, ambient relative humidity, absorbed water vapor, and other factors, it is the responsibility of the user of these test methods to specify the minimum acceptable leakage resistance.1.1 These test methods provide procedures to determine the insulation resistance of a photovoltaic (PV) module, i.e. the electrical resistance between the module's internal electrical components and its exposed, electrically conductive, non-current carrying parts and surfaces.1.2 The insulation integrity procedures are a combination of wet insulation resistance and wet dielectric voltage withstand test procedures.1.3 These procedures are similar to and reference the insulation integrity test procedures described in Test Methods E1462, with the difference being that the photovoltaic module under test is immersed in a wetting solution during the procedures.1.4 These test methods do not establish pass or fail levels. The determination of acceptable or unacceptable results is beyond the scope of these test methods.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
68 条记录,每页 15 条,当前第 1 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页