微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 156元 / 折扣价: 133

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

5.1 Electronic circuits used in many space, military, and nuclear power systems may be exposed to various levels and time profiles of neutron radiation. It is essential for the design and fabrication of such circuits that test methods be available that can determine the vulnerability or hardness (measure of survivability) of components to be used in them. A determination of hardness is often necessary for the short term (≈100 μs) as well as long term (permanent damage) following exposure. See Practice E722.1.1 This guide defines the requirements and procedures for testing silicon discrete semiconductor devices and integrated circuits for rapid annealing effects from displacement damage resulting from neutron radiation. This test will produce degradation of the electrical properties of the irradiated devices and should be considered a destructive test. Rapid annealing of displacement damage is usually associated with bipolar technologies.1.1.1 Heavy ion beams can also be used to characterize displacement damage annealing (1),2 but ion beams have significant complications in the interpretation of the resulting device behavior due to the associated ionizing dose. The use of pulsed ion beams as a source of displacement damage is not within the scope of this standard.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Excessive levels of hydrogen sulfide in the vapor phase above residual fuel oils in storage tanks can result in health hazards, violation of local occupational health and safety regulations, and public complaint. An additional concern is corrosion that can be caused by the presence of H2S during refining or other activities. Control measures to maintain safe levels of H2S require a precise method for the measurement of potentially hazardous levels of H2S in fuel oils. (Warning—Safety. Hydrogen sulfide (H2S) is a very dangerous, toxic, explosive and flammable, colorless and transparent gas which can be found in crude oil and can be formed during the manufacture of the fuel at the refinery and can be released during handling, storage, and distribution. At very low concentrations, the gas has the characteristic smell of rotten eggs. However, at higher concentrations, it causes a loss of smell, headaches, and dizziness, and at very high concentrations, it causes instantaneous death. It is strongly recommended that personnel involved in the testing for hydrogen sulfide are aware of the hazards of vapor-phase H2S and have in place appropriate processes and procedures to manage the risk of exposure.)5.2 This test method was developed so refiners, fuel terminal operators, and independent testing laboratory personnel can rapidly and precisely measure the amount of H2S in residual fuel oils and distillate blend stocks, with a minimum of training, in a wide range of locations.5.3 Test Method D5705 provides a simple and consistent field test method for the rapid determination of H2S in the residual fuel oils vapor phase. However it does not necessarily simulate the vapor phase H2S concentration of a fuel storage tank nor does it provide any indication of the liquid phase H2S concentration.5.4 Test Method D6021 does measure the H2S concentration of H2S in the liquid phase, however it requires a laboratory and a skilled operator to perform the complex procedure and calculations, and does not offer any reproducibility data. This test method (D7621) offers a 15 min automated test, simplicity, full precision, and a degree of portability.5.5 H2S concentrations in the liquid and vapor phase attempt to reach equilibrium in a static system. However, this equilibrium and the related liquid and vapor concentrations can vary greatly depending on temperature and the chemical composition of the liquid phase. The equilibrium of the vapor phase is disrupted the moment a vent or access point is opened to collect a sample.1.1 This test method covers procedures (A and B) for the determination of the hydrogen sulfide (H2S) content of fuel oils such as marine residual fuels and blend stocks, with viscosity up to 3000 mm2s-1 at 50 °C, and marine distillate fuels, as measured in the liquid phase.NOTE 1: Specification fuels falling within the scope of this test method are: ASTM Specification D396, MIL-DTL-16884, and ISO 8217.1.2 Procedure A has been shown to eliminate interferences such as thiols (mercaptans) and alkyl sulfides. Procedure B can give elevated results if such interferences are present (see Annex A2).NOTE 2: A procedure for measuring the amount of hydrogen sulfide in crude oil can be found in Appendix X1. Full precision for Appendix X1 has not yet been determined.1.3 Valid ranges for the precision are given in Table 2 and Table 3. Measurements can be made outside these ranges however precision has not been determined.1.4 Samples containing FAME do not affect the measurement of hydrogen sulfide by this test method.1.5 The values stated in SI units are to be regarded as standard. Non-SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This specification covers packaged, dry, cementitious mortar or concrete materials for rapid repairs to hardened hydraulic-cement concrete pavements and structures. Materials that contain organic compounds, such as bitumens, epoxy resins, and polyesters, as the principal binder are not included. Packaged, dry, concrete material contains aggregate of which at least 5% by mass of the total mixture is retained. Packaged, dry, mortar material contains aggregate of which less than 5% by mass of the total mixture is retained. Aqueous solutions, aqueous emulsions or dispersions may be included as components of the packaged materials. Aggregates must be included as a component of the packaged materials. Both packaged dry concrete and mortar shall be mechanically mixed with the use of a mixing liquid. Different test methods shall be performed in order to determine the following properties: compressive strength, length change, scaling resistance, and slant shear bond strength.1.1 This specification covers packaged, dry, cementitious mortar or concrete materials for rapid repairs to hardened hydraulic-cement concrete pavements and structures. Materials that contain organic compounds, such as bitumens, epoxy resins, and polymers, as the principal binder are not included.1.1.1 Packaged, dry, concrete material contains aggregate of which at least 5 % by mass of the total mixture is retained on a 9.5-mm [3/8-in.] sieve.1.1.2 Packaged, dry, mortar material contains aggregate of which less than 5 % by mass of the total mixture is retained on a 9.5-mm [3/8-in.] sieve.1.2 Aqueous solutions, aqueous emulsions or dispersions may be included as components of the packaged materials. The manufacturer may specify that these liquids are to replace some or all of the mixing water.1.3 Aggregates must be included as a component of the packaged materials. The manufacturer may recommend job site addition of specific amounts and types of additional aggregates to his product for some uses. However, such reformulated products are not within the scope of this specification.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 The following safety hazards caveat pertains to the test methods portion of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Riprap and armor material are composed of pieces of natural rock or manmade material that are placed on construction projects, shorelines, streambeds, bridge abutments, pilings and other structures to minimize the effects of erosion. The ability of rock or manmade material to withstand deterioration from weathering affects both the effectiveness of the project and its cost. The specific gravity and absorption provide useful information that can be used in evaluating possible deterioration of rock or manmade material.5.2 Test specimens equal in size to the proposed design size would provide the best correlations between laboratory tests and actual field performance; however, this is usually neither practical nor economically feasible.5.3 This test method has been used to evaluate different types of rocks and manmade material. There have been rare occasions when test results have provided data that have not agreed with the durability of rock or manmade material under actual field conditions.5.4 The results of this test is not to be used as the sole basis for determination of durability, but should be used in conjunction with the results of other tests.Note 1—The quality of the result produced by this standard is dependent upon the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluation some of those factors1.1 This test method covers the determination of the rapid specific gravity of rock or man-made materials for erosion control.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.3.1 For purposes of comparing measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.3.2 The procedures used to specify how data are collected/recorded or calculated, in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 This test method is for the rapid assessment of the static segregation resistance of self-consolidating concrete.5.2 The method is useful for rapid assessment of the static segregation resistance of self-consolidating concrete during mixture development in the laboratory as well as prior to placement of the mixture in the field. Test Method C1610/C1610M for static segregation of SCC is not sufficiently rapid, and the non-mandatory Visual Stability Index as determined through the procedure described in Appendix X1 of Test Method C1611/C1611M is highly subjective and qualitative.5.3 Appendix X1 provides non-mandatory criteria that may be used to indicate the degree of static segregation resistance of self-consolidating concrete mixtures.1.1 This test method covers the rapid assessment of static segregation resistance of normal-weight self-consolidating concrete (SCC). The test does not measure static segregation resistance directly, but provides an assessment of whether static segregation is likely to occur.1.2 The test apparatus and protocol were developed based on tests with SCC mixtures containing saturated surface dry (SSD) coarse aggregates ranging in relative density from 2.67 to 2.79 and in nominal maximum size from 9.5 mm to 25 mm. For SCC mixtures outside these ranges, testing is recommended to establish a correlation between penetration depth and static segregation measured in accordance with Test Method C1610/C1610M. This test method shall not be used to assess the static segregation resistance of self-consolidating concrete containing lightweight aggregates or heavyweight aggregates without prior testing to establish a correlation.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 The text of this standard references notes and footnotes that provide explanatory material. These notes and footnotes shall not be considered as requirements of the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. (Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.2)1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Strontium-90 is a major component of nuclear waste and is also a potential radioisotope for use as a weapon of mass destruction in a radiological dispersal device. It is a beta-emitting radioisotope with moderate half-life (~30 years). Strontium-89 is also a beta emitting radionuclide, but with a half-life of only ~50 days it is not usually present in significant quantities. If ingested the radiostrontium may deposit in the bone of an individual and thus can contribute a significant radiological dose to an affected person.5.2 Following an explosion in which radioactive material was present, the potential exists for the material to become airborne. It will quickly attach to atmospheric particles and be deposited on surfaces as the plume passes. This guide provides a rapid procedure by which vegetation can be screened to determine if radiostrontium is present and to provide a conservative estimate of its deposition on vegetation.5.3 This guide is intended to be used in a field portable lab, or if needed, can be performed completely in the field; therefore no hazardous chemicals are required to complete the analysis. However, an option for the use of acid in certain steps is documented in this guide.5.4 This guide is not intended to be used for screening food products or animal feed following an accident or incident.1.1 This guide provides a rapid procedure by which vegetation samples may be screened for surface contamination of radioactive strontium (89Sr and 90Sr, collectively referred to as radiostrontium) following an airborne radioactive dispersal event. It provides a conservative estimate of radiostrontium deposition that can be used by decision makers for immediate actions prior to obtaining definitive results from a fixed laboratory asset.1.2 Insoluble forms of radiostrontium, such as the strontium (90Sr) titanate (SrTiO3) used in radio-isotope thermal-electric generators (RTGs), will not be measured by this method.1.3 Non-SI units are used in the calculations of this guide for ease of use during the emergency phase of an event. The instrumentation used typically provides count rates in counts per minute (cpm) rather than per second (s–1, the SI unit), thus activity is expressed in dpm (decays per minute) rather than Bq. Additionally, US EPA protective guidelines for surface contamination are expressed in dpm/100 cm2.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

4.1 Crude petroleum contains sulfur compounds, most of which are removed during refining. However, of the sulfur compounds remaining in the petroleum product, some can have a corroding action on various metals, including copper, and this corrosivity is not necessarily related to the total sulfur content. The effect can vary according to the chemical types of sulfur compounds present. This copper foil strip corrosion test is designed to assess the relative degree of corrosivity of a petroleum product towards copper and copper-containing alloys using a shorter test duration than that specified in Test Method D130.4.2 Some sulfur species may become corrosive to copper only at higher temperatures. Thus, higher test temperatures, particularly 100 °C (212 °F), may be used to test some products by the pressure vessel procedure.1.1 This test method covers the determination of the corrosiveness to copper of aviation gasoline, aviation turbine fuel, automotive gasoline, natural gasoline, or other hydrocarbons having a vapor pressure no greater than 124 kPa (18 psi), cleaners (for example, Stoddard solvent), kerosine, diesel fuel, distillate fuel oil, lubricating oil, and other petroleum products.1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—The values in parentheses are provided for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 6.1, 10.1.1, and Annex A2.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
87 条记录,每页 15 条,当前第 1 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页