微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Overlap splices are used in field applications of FRP composites when site conditions prohibit continuous access to a structural element or when the specified length of the FRP composite is such that saturation and placement of the entire length would be cumbersome. This method can be used as a quality control mechanism for ensuring that overlap splices constructed under field conditions meet or exceed the requirements established by the design engineer or FRP system manufacturer. Both the saturant mixing and fiber saturation method can be verified for wet-layup FRP systems.5.2 Caution is recommended when interpreting apparent shear strength results obtained from this method. Single shear lap splices develop non-uniform shear stress distributions within the overlap splice region during testing. Additional guidance on the interpretation and use of results obtained from lap shear testing is found in D4896.5.3 This test method focuses on the FRP material itself, irrespective of gripping method. Therefore, strengths resulting from failure or pullout at either grip are disregarded. The strength measurements are based solely on test specimens that fail in the gauge section (away from the grips) or at the splice.1.1 This test method describes the requirements for sample preparation and tensile testing of single-lap shear splices formed with fiber-reinforced polymer (FRP) composite materials commonly used for strengthening of structures made of materials such as metals, timber, masonry, and reinforced concrete. The objective of this method is to determine the apparent shear strength of an overlap splice joint through the application of a far-field tensile force. The method applies to wet lay-up FRP material systems fabricated on site or in a laboratory setting. The FRP composite may be of either unidirectional (0°) or cross-ply (0/90 type) reinforcement. For cross-ply laminates, the construction may be achieved using multiple-layers of unidirectional fibers at either 0 or 90°, or one or more layers of stitched or woven 0/90 fabrics. The composite material forms are limited to continuous fiber or discontinuous fiber-reinforced composites in which the laminate is balanced and symmetric with respect to the test direction. The method is often used to determine the length of the overlap splice needed to ensure that a tension failure occurs in the material away from the splice rather than the splice connection itself.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702元 / 折扣价: 597 加购物车

在线阅读 收 藏

4.1 This test system has advantages in certain respects over the use of static loading systems in the measurement of glass and glass-ceramics:4.1.1 Only minute stresses are applied to the specimen, thus minimizing the possibility of fracture.4.1.2 The period of time during which stress is applied and removed is of the order of hundreds of microseconds, making it feasible to perform measurements at temperatures where delayed elastic and creep effects proceed on a much-shortened time scale, as in the transformation range of glass, for instance.4.2 The test is suitable for detecting whether a material meets specifications, if cognizance is given to one important fact: glass and glass-ceramic materials are sensitive to thermal history. Therefore the thermal history of a test specimen must be known before the moduli can be considered in terms of specified values. Material specifications should include a specific thermal treatment for all test specimens.1.1 This test method covers the determination of the elastic properties of glass and glass-ceramic materials. Specimens of these materials possess specific mechanical resonance frequencies which are defined by the elastic moduli, density, and geometry of the test specimen. Therefore the elastic properties of a material can be computed if the geometry, density, and mechanical resonance frequencies of a suitable test specimen of that material can be measured. Young's modulus is determined using the resonance frequency in the flexural mode of vibration. The shear modulus, or modulus of rigidity, is found using torsional resonance vibrations. Young's modulus and shear modulus are used to compute Poisson's ratio, the factor of lateral contraction.1.2 All glass and glass-ceramic materials that are elastic, homogeneous, and isotropic may be tested by this test method.2 The test method is not satisfactory for specimens that have cracks or voids that represent inhomogeneities in the material; neither is it satisfactory when these materials cannot be prepared in a suitable geometry. Non-glass and glass-ceramic materials should reference Test Method E1875  for non-material specific methodology to determine resonance frequencies and elastic properties by sonic resonance.NOTE 1: Elastic here means that an application of stress within the elastic limit of that material making up the body being stressed will cause an instantaneous and uniform deformation, which will cease upon removal of the stress, with the body returning instantly to its original size and shape without an energy loss. Glass and glass-ceramic materials conform to this definition well enough that this test is meaningful.NOTE 2: Isotropic means that the elastic properties are the same in all directions in the material. Glass is isotropic and glass-ceramics are usually so on a macroscopic scale, because of random distribution and orientation of crystallites.1.3 A cryogenic cabinet and high-temperature furnace are described for measuring the elastic moduli as a function of temperature from –195 to 1200 °C.1.4 Modification of the test for use in quality control is possible. A range of acceptable resonance frequencies is determined for a piece with a particular geometry and density. Any specimen with a frequency response falling outside this frequency range is rejected. The actual modulus of each piece need not be determined as long as the limits of the selected frequency range are known to include the resonance frequency that the piece must possess if its geometry and density are within specified tolerances.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method for transverse shear strength is intended for use in laboratory tests in which the principal variable is the size or type of FRP bars. The test may be used for smooth round rods or on bars with a textured or undulating surface added to promote bond of the bars to Portland cement concrete. This test method establishes values of transverse shear strength for material specifications, quality control, quality assurance, research and development, and may also be used for structural design purposes.5.2 Experience with this test method and the accompanying fixture is primarily with smooth rods and textured bars with diameters ranging from 6 mm to 25 mm [0.25 in. to 1 in.]. The method may be used for rods or bars of larger diameters, but the overall geometry of the test fixture may need to be increased.1.1 This test method specifies the test requirements for (FRP) composite smooth round rods and textured bars for determining the transverse shear strength via a double shear fixture. FRP rods and bars are often loaded in transverse shear when these elements are used as dowels in concrete pavements, as stirrups in concrete beams, or as shear reinforcements in glued-laminated wood beams, for example.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 Within the text, the inch-pound units are shown in brackets.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
316 条记录,每页 15 条,当前第 1 / 22 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页