微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 333元 / 折扣价: 284 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 It is important to consider the durability of stent designs in deformation modes that are intended to model in vivo conditions. The appropriate amplitude and number of cycles in each of the modes have to be determined independently for the particular clinical use proposed for the stent. These tests do not replicate all varieties and aspects of the deployment process nor the in vivo mechanical environment in its entirety, and as such they cannot be proofs of durability. Instead, the tests provide evidence of durability. The durability tests can also provide a means of assessing design, material or processing changes.5.1.1 This guide might be useful for development testing, specification acceptance testing, and regulatory submission testing and filings as it provides a basic assurance that the tests are designed, executed, and reported in a suitable fashion.5.1.2 If the tests are conducted using a well defined FTF methodology, they can be useful in:5.1.2.1 Potential design improvement through identification of better and worse geometries, materials, and manufacturing processes;5.1.2.2 Understanding product durability by estimating the effects of changes in geometry, materials, or manufacturing processes;5.1.2.3 Estimating the safety factor relative to the amplitudes and other factors in use conditions; and5.1.2.4 Validating finite element analysis (FEA) and fatigue life models.5.1.3 As stated in the scope, this guide is not intended to provide the in vivo physiologic deformation conditions to which a vascular stent can be subjected. Reliable clinical data characterizing cyclic vascular deformation may be lacking for some indications. The user should develop and justify the boundary conditions (e.g., by literature review, in vivo studies, cadaver studies, or modeling of stent vessel interaction) for the chosen durability bench tests. Additional conditions that may be considered include vessel calcification, vessel taper, eccentric lesions, deformation excursions (e.g., exercise), and vessel remodeling.5.1.4 Test methods other than those provided in the annexes of this document might be appropriate, depending upon stent design. However, these methods are beyond the scope of this guide.1.1 This guide includes three separate cyclic deformation durability guides related to vascular stents: bending, axial, and torsional.1.2 This guide does not address flat plate, local crush durability, or multi-mode testing. Although this guide does not address multi-mode testing, the information included herein could be applicable to developing this type of test.1.3 This guide applies to balloon-expandable and self-expanding stents fabricated from metals and metal alloys. It does not specifically address any attributes unique to coated stents (i.e., stents with a surface layer of an additional material(s)), monolithically polymeric stents, or absorbable stents, although the application of this standard to those products is not precluded.1.4 This guide applies to endovascular grafts (“stent-grafts”) and other conduit products commonly used to treat aneurismal disease, peripheral vessel trauma, or to provide vascular access. The information provided herein does not address all issues related to testing of these devices.1.5 This guide is applicable to testing of stent(s) (or a representative portion of a stent). While durability testing of coupon samples (e.g., a scaled-up portion of the stent structure) can provide useful information, it is not within the scope of this guide.1.6 This guide applies to in vitro modeling of stent durability from non-radial arterial motions. Such motions may arise from musculoskeletal activities, including walking and breathing, and cardiac motion. Test Methods F2477 addresses pulsatile (i.e., radial) durability of vascular stents.1.7 This guide does not provide the in vivo physiologic deformation conditions for a vascular stent. It is incumbent upon the user of the standard to develop and justify these boundary conditions (e.g., by literature review, in vivo studies, cadaver studies, or modeling of stent vessel interaction) in these durability bench tests. Additional conditions that may be considered include vessel calcification, vessel taper, eccentric lesions, loading excursions (e.g., exercise), and vessel remodeling.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM F3106-22 Standard Guide for in vitro Osteoblast Differentiation Assays Active 发布日期 :  1970-01-01 实施日期 : 

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

1 Scope This part of ISO 10993 describes test methods to assess the in vitro cytotoxicity of medical devices. These methods specify the incubation of cultured cells either directly or through diffusion a) with extracts of a device, and/or; b) in

定价: 364元 / 折扣价: 310

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

CSA Preface This is the first edition of CAN/CSA-ISO 15197, In vitro diagnostic test systems - Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus, which is an adoption without modification of the identicall

定价: 1092元 / 折扣价: 929

在线阅读 收 藏

5.1 This standard provides an itemization of potential in vitro test methods to evaluate the degradation of absorbable metals. The provided approach defers to the user of this standard to pick most appropriate method(s) based on the specific requirements of the intended application. However, a minimum of at least two different corrosion evaluation methods is considered necessary for basic profiling of the material or device, with additional methods potentially needed for an adequate characterization. However, in some instances there may be only one method that correlates to in vivo degradation results.5.2 It is recognized that not all test methods will be meaningful for every situation. In addition, some methods carry different potential than others regarding their relative approximation to the in vivo conditions within which actual use is to occur. As a result, some discussion and ranking of the relevance of the described methods is provided by this guidance.5.3 It should be noted that degradation of absorbable metals is not linear. Thus, precautions should be taken that evaluations of the degradation profile of a metal or metal device are appropriately adapted to reflect the varying stages and rates of degradation. Relevant factors can include the amount or percentage (%) of tissue coverage of the implanted device and the metabolic rate of surrounding tissue, which is not necessarily accompanied by a high perfusion rate.5.4 It is recognized that in vivo environments will impart specialized considerations that can directly affect the corrosion rate, even when compared with other in vivo locations. Thus, a basic understanding of the biochemistry and physiology of the specific targeted implant location (e.g. hard tissue; soft tissue; high, low or zero perfusion areas/tissue; high, low or zero loading environments) is needed to optimize in vitro and in vivo evaluations.5.5 Within the evaluation of absorbable metals, rate uniformity is considered to be the principle concern and design goal. The recognized primary value for the herein described in vitro testing under static (i.e. not dynamic) conditions is to monitor and screen materials and/or devices for their corrosion consistency. Such an evaluation may provide a practical understanding of the uniformity of the device prior to any subsequent in vivo testing - where device consistency is considered to be critical for optimizing the quality of the obtained observations.5.6 Once a suitable level of device corrosion consistency has been established (either directly or historically), static and/or dynamic fatigue testing can then be undertaken, if needed, to further enhance the understanding of the corrosion process within the context of the device’s overall design and its intended application/use.5.7 Depending on the intended application, appropriate levels of implant loading may range from minimal to severe. Thus, this standard does NOT directly address the appropriate level of loading of absorbable metallic devices, guidance for which may be found in documents specific to the intended implant application and the design requirements for the product.5.8 This standard does NOT directly address dynamic fatigue testing of absorbable metallic devices.1.1 The purpose of this standard is to outline appropriate experimental approaches for conducting an initial evaluation of the in vitro degradation properties of a device or test sample fabricated from an absorbable metal or alloy.1.2 The described experimental approaches are intended to control the corrosion test environment through standardization of conditions and utilization of physiologically relevant electrolyte fluids. Evaluation of a standardized degradation control material is also incorporated to facilitate comparison and normalization of results across laboratories.1.3 The obtained test results may be used to screen materials and/or constructs prior to evaluation of a more refined fabricated device. The described tests may also be utilized to define a device’s performance threshold prior to more extensive in vitro performance evaluations (e.g. fatigue testing) or in vivo evaluations.1.4 This standard is considered to be applicable to all absorbable metals, including magnesium, iron, and zinc-based metals and alloys.1.5 The described tests are not considered to be representative of in vivo conditions and could potentially provide a more rapid or slower degradation rate than an absorbable metal’s actual in vivo corrosion rate. The herein described test methods are to be used for material comparison purposes only and are not to act as either a predictor or substitute for evaluation of the in vivo degradation properties of a device.1.6 This standard only provides guidance regarding the in vitro degradation of absorbable metals and does not address any aspect regarding either in vivo or biocompatibility evaluations.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice describes a procedure for producing spore suspensions of C. difficile ATCC 700792, C. difficile ATCC 43598, or C. difficile ATCC 43599. The spore suspensions may be used in antimicrobial efficacy testing, or other laboratory testing requiring C. difficile spores. A spore crop is considered acceptable if the titer is >8 log10 spores/mL, purity of 95 %, and is resistant to 2.5M HCl after 10 min of exposure.1.1 This practice is designed to propagate spores of Clostridioides difficile using liver broth.1.2 It is the responsibility of the user of this practice to determine whether Good Laboratory Practices are required and follow when appropriate.1.3 This practice should only be performed by those trained in microbiological techniques.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 In vitro hemolysis test results for blood pumps may be substantially affected by donor species, sex, age, fasting, the method of harvesting, the anticoagulant properties, the period of storage, the biochemical state of the blood, and the hemoglobin and hematocrit level of blood.3,4 Therefore, standardization of proper whole blood collection and preparation for the dynamic in vitro evaluation of blood pumps is essential, and this recommended practice will allow an acceptable comparison of test results among hemolysis tests involving similar testing methods.1.1 This practice covers whole blood that will be used for the in vitro performance assessment of hemolysis in blood pumps intended for clinical use.1.2 This practice covers the recommended standard collection, preparation, handling, storage, and utilization of whole blood for the in vitro evaluation (see Practice F1841) of the following devices:1.2.1 Continuous flow blood pumps (roller pumps, centrifugal pumps, axial flow pumps, etc.).1.2.2 Pulsatile and intermittent flow blood pumps (pneumatically driven, electro-mechanically driven, with an artificial pulse, etc.).1.3 The source and preparation of whole blood utilized for the dynamic in vitro evaluation of red blood cell (erythrocyte) trauma caused by blood pumps can substantially influence the hemolysis performance of these devices. Thus, standardized whole blood collection and preparation methods are required.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
35 条记录,每页 15 条,当前第 1 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页