微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Dimensional measurements of the product thermal insulation are essential in determining compliance of a product with specification limits. Dimensional measurements of various test specimens are also required by the specific test method.5.2 Density measurements of the product insulation are useful in determining compliance of a product with specification limits, and in providing a relative gage of product weights. For any one kind of insulation, some important physical and mechanical properties, such as thermal conductivity, heat capacity, strength, etc., bear a specific relationship with its density. In order to design for equipment supports, check the material for the “as received density” where the moisture content of the product as received and then installed has the potential to be consequential.1.1 This test method covers determination of the dimensions and density of block and board insulation as defined in Terminology C168.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method may be used for acceptance testing of commercial shipments of geotextiles, but caution is advised since information on the precision of the test is lacking. Comparative testing as directed in 5.1.1 may be advisable.5.1.1 In case of a dispute arising from differences in reported test results when using this test method, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. At a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results in light of the known bias.5.2 The resistance of abrasion is also greatly affected by the conditions of the tests, such as the nature of abradant, variable action of the abradant over the area of specimen abraded, the tension of the specimen, the pressure between the specimen and abradant, and the dimensional changes in the specimens.5.3 The resistance of geotextile materials to abrasion as measured on a testing machine in the laboratory is generally only one of several factors contributing to performance or durability as experienced in the actual use of the material. While “abrasion resistance” and “durability” are frequently related, the relationship varies with different end uses and different factors may be necessary in any calculation of predicted durability from specific abrasion data. Laboratory tests may be reliable as an indication of relative end-use performance in cases where the difference in abrasion resistance of various materials is large, but they should not be relied upon for prediction of actual in-situation life in specific end uses unless there are data showing the specific relationship between laboratory abrasion tests and actual in-situation life in the intended end use.5.4 These general observations apply to all types of fabrics, including woven, nonwoven, and knit fabrics.5.5 If there is a disagreement arising from differences in values reported by the purchaser and the seller when using this test method for acceptance testing, the statistical bias, if any, between the laboratory of the purchaser and the laboratory of the seller should be determined with each comparison being based on testing specimens randomly drawn from one sampling unit of material of the type being evaluated.1.1 This test method covers the determination of resistance of geotextiles to abrasion using an abrasion tester. This test method at this point has only been evaluated for geotextiles—not geomembranes, grids, etc. Therefore, the test method is designated for geotextiles, not geosynthetics, as all products may not lend themselves to this test method for abrasion. If later developments indicate a wider scope for this test method, appropriate changes will be made.1.2 The values stated in SI units are to be regarded as standard. The values given in inch-pound units are provided as information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 Coated wood panel products must be stacked face to face or face to back during warehousing, packaging, and transportation without the coated finish sticking (blocking) and becoming damaged. This test method describes a laboratory means of evaluating conditions of blocking using factors of pressure, heat, time and moisture.4.2 Degrees of hardness or degrees of cure of organic coatings, or both, can be evaluated using a blocking test.4.3 The rate of volatile loss (drying speed) of organic coatings can be evaluated using a blocking test.4.4 The effectiveness of protective packaging materials (slip sheets) for organic coatings on wood substrates can be evaluated using a blocking test.1.1 This test method covers the determination of the block resistance of organic coatings on wood and wood-based panel substrates. Block resistance is the ability of a coating to resist sticking to another surface and to resist any change in appearance when it is pressed against that surface for a prolonged period of time.1.2 General methods for determining block resistance are outlined in Sections 6 and 7. Variations inherent in user materials and procedures, however, may dictate adjustments to the general method to improve accuracy. Paragraphs 7.3 and 7.4 provide guidelines for tailoring the general procedure to a user's specific application. Paragraph 7.5 offers a rating methodology.1.3 Test Method D2091 should be used for the determination of print resistance or pressure mottling of organic coatings, particularly lacquers, applied to wood-based case goods such as furniture.1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

This specification covers calcium silicate block and pipe thermal insulation for use on surfaces. Thermal insulation shall be of the following types: Type I; Type IA; and Type II. Calcium silicate thermal insulation shall consist principally of hydrous calcium silicate usually with the incorporation of fibrous reinforcement. The insulation shall conform to the physical requirements specified. Following test methods shall be performed: block insulation; pipe insulation; apparent thermal conductivity; linear shrinkage after heat soaking; flexural strength; compressive strength; mass loss by tumbling; hot surface performance; surface burning characteristics; stress corrosion performance; and moisture content by dry weight.1.1 This specification covers calcium silicate block and pipe thermal insulation for use on surfaces with temperatures between 80 and 1700°F (27 to 927°C), unless otherwise agreed upon between the manufacturer and the purchaser.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 The following safety hazards caveat pertains only to the test method (Section 12) described in this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 The properties included in this standard are those required to control the visual quality, usable area, thickness, hardness, and stiffness.1.1 This classification covers the determination of commercially available natural muscovite block mica and is intended to be independent of the basic color of the mica or its source.1.2 Muscovite mica is characterized by having an optical axial angle between 50 and 75° (see Appendix X1); and has a weight loss when heated for 5 min at 600°C not exceeding 0.2 % (based on the weight after drying at 120°C).1.3 The visual system of classifying the quality of natural muscovite mica covered by this specification is based upon relative amounts of visible foreign inclusions such as air bubbles, stains, and spots in combination with relative amounts and types of waviness, as well as other physical properties. In this system, a perfectly clear, transparent, flat specimen of mica is the visual standard of perfection. Increasing amounts of visual defects lower the visual quality, and a total of 13 levels of visual quality are covered by this standard. This method of classification, generally known as the Bengal India System, is purely qualitative and is entirely dependent on personal opinion and judgment.1.4 The standards for visual quality classification that are covered in this classification are the best commercially available concept of the various qualities and their relative positions. Variations in the methods of using and applying these standards from those herein defined are specified by the purchaser, or defined by agreement between the supplier and the purchaser.1.5 Standard size classifications are defined, based upon available usable rectangular areas and the minimum dimensions of the rectangles that the pieces will yield. Precautions to be taken in making thickness measurements are also described.1.6 This standard covers the following two definite forms of commercial preparation:1.6.1 Form 1—Full-trimmed natural block mica, 0.007 in. (0.178 mm) minimum thickness.1.6.2 Form 2—Partially-trimmed natural block mica, 0.007 in. minimum thickness.1.7 The basic color of mica, such as white, ruby, light green, dark green, brownish green, and rum, as well as other colors, and the method of controlling the color and other problems associated with the basic color, are not a part of this classification.1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 Section 5 is technically identical to procedures specified in ISO 67-1981.1.10 Section 6 differs somewhat in procedure from ISO 5972-1978, but data obtained by either is expected to be identical.1.11 Section 7 is technically identical to procedures specified in ISO 2185-1972.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This standard is intended for use by researchers and designers to assess the stability of articulating concrete block (ACB) revetment systems in order to achieve stable hydraulic performance under the erosive force of flowing water.5.2 An articulating concrete block system is comprised of a matrix of individual concrete blocks placed together to form an erosion-resistant revetment with specific hydraulic performance characteristics. The system includes a filter layer compatible with the subsoil which allows infiltration and exfiltration to occur while providing particle retention. The filter layer may be comprised of a geotextile, properly graded granular media, or both. The blocks within the matrix shall be dense and durable, and the matrix shall be flexible and porous.5.3 Articulating concrete block systems are used to provide erosion protection to underlying soil materials from the forces of flowing water. The term “articulating,” as used in this standard, implies the ability of individual blocks of the system to conform to changes in the subgrade while remaining interconnected by virtue of block interlock or additional system components such as cables, ropes, geotextiles, geogrids, or other connecting devices, or combinations thereof.5.4 The definition of articulating concrete block systems does not distinguish between interlocking and non-interlocking block geometries, between cable-tied and non-cable-tied systems, between vegetated and non-vegetated systems or between methods of manufacturing or placement. This standard does not specify size restrictions for individual block units. Block systems are available in either open-cell or closed-cell varieties.1.1 The purpose of this guide is to provide recommended guidelines for the analysis and interpretation of hydraulic test data for articulating concrete block (ACB) revetment systems under steep slope, high velocity flow conditions in a rectangular open channel. Data from tests performed under controlled laboratory conditions are used to quantify stability performance of ACB systems under hydraulic loading. This guide is intended to be used in conjunction with Test Method D7277.1.2 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which adequacy of a given professional service must be judged, nor can this document be applied without considerations of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.3 The values stated in inch-pound units are to be regarded as standard. The user of the standard is responsible for any and all conversions to other systems of units. Reporting of test results in units other than inch-pound shall not be regarded as nonconformance with this test method.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 An articulating concrete block revetment system is comprised of a matrix of individual concrete blocks placed together to form an erosion-resistant revetment with specific hydraulic performance characteristics. The system includes a filter layer compatible with the subsoil which allows infiltration and exfiltration to occur while providing particle retention. The filter layer may be comprised of a geotextile, properly graded granular media, or both. The concrete blocks within the matrix shall be dense and durable, and the matrix shall be flexible and porous.5.2 ACB revetment system are used to provide erosion protection to underlying soil materials from the forces of flowing water. The term “articulating,” as used in this standard, implies the ability of individual concrete blocks of the system to conform to changes in subgrade while remaining interconnected by virtue of geometric interlock, cables, ropes, geotextiles, geogrids, or combination thereof.5.3 The definition of ACB revetment system does not distinguish between interlocking and non-interlocking block geometries, between cable-tied and non-cable-tied systems, between vegetated and non-vegetated systems or between methods of manufacturing or placement. Furthermore, the definition does not restrict or limit the block size, shape, strength, or longevity; however, guidelines and recommendations regarding these factors are incorporated into this standard. Blocks are available in either open-cell or closed-cell configurations.1.1 The purpose of this test method is to provide specifications for the hydraulic testing of full-scale articulating concrete block (ACB) revetment systems under controlled laboratory conditions for purposes of identifying stability performance in steep slope, high-velocity flows. The testing protocols, including system installation, test procedures, measurement techniques, analysis techniques, and reporting requirements are described in this test method.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. Reporting or use of units other than inch-pound shall not be considered non-conformance as long as the selected parameters described regarding flume construction by the inch-pound system used in this method are met as a minimum.1.2.1 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The procedures used to specify how data are collected, recorded and calculated in this Guide are regarded as the industry standard. In addition they are representative of the significant digits that generally be retained. The procedures used do not consider material variation, purpose of obtaining the data, special purpose studies or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors and Practice D3740 provides a means of evaluating some of these factors.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The significance of this test method in any overall measurement program directed toward a service application will depend on the relative match of test conditions to the conditions of the service application.5.2 This test method seeks only to prescribe the general test procedure and method of calculating and reporting data. The choice of test operating parameters is left to the user. A fixed amount of sliding distance must be used because wear is usually non-linear with distance in this test.1.1 This test method covers laboratory procedures for determining the resistance of materials to sliding wear. The test utilizes a block-on-ring friction and wear testing machine to rank pairs of materials according to their sliding wear characteristics under various conditions.1.2 An important attribute of this test is that it is very flexible. Any material that can be fabricated into, or applied to, blocks and rings can be tested. Thus, the potential materials combinations are endless. However, the interlaboratory testing has been limited to metals. In addition, the test can be run with various lubricants, liquids, or gaseous atmospheres, as desired, to simulate service conditions. Rotational speed and load can also be varied to better correspond to service requirements.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only. Wear test results are reported as the volume loss in cubic millimetres for both the block and ring. Materials of higher wear resistance will have lower volume loss.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 These test methods are to be used to determine the resistance of some types of preformed block insulation when transverse loads are normally applied to the surface. Values are measured at the maximum load or breaking point under specified conditions or specimen size, span between supports, and rate of load application. The equations used are based on the assumption that the materials are uniform and presume that the stress-strain characteristics below the elastic limit are linearly elastic. These assumptions are not strictly applicable to thermal insulations of certain types in which crushing occurs before failure is obtained in transverse bending; however, depending upon the accuracy required, these procedures are capable of providing acceptable results.5.2 Test Method I is especially useful when testing only for the modulus of rupture or the breaking load. This information is useful for quality control inspection and qualification for specification purposes.5.3 Test Method II is useful in determining the elastic modulus in bending as well as the flexural strength. Flexural properties determined by these test methods are also useful for quality control and specification purposes.5.4 The basic differences between the two test methods is in the location of the maximum bending moment, maximum axial fiber (flexural or tensile) stresses, and the resolved stress state in terms of shear stress and tensile/compression stress. The maximum axial fiber stresses occur on a line under the loading fitting in Test Method I and over the area between the loading fittings in Test Method II. Test Method I has a high shear stress component in the direction of loading, perpendicular to the axial fiber stress. Sufficient resolved shear stress is capable of producing failure by a shear mode rather than a simple tension/flexural failure. There is no comparable shear component in the central region between the loading fittings in Test Method II. Test Method II simulates a uniformly loaded beam in terms of equivalent stresses at the center of the specimen.5.5 Flexural properties are capable of varying with specimen span-to-thickness ratio, temperature, atmospheric conditions, and the difference in rate of straining specified in Procedures A and B. In comparing results it is important that all parameters be equivalent. Increases in the strain rate typically result in increased strengths and in the elastic modulus.1.1 These test methods cover the determination of the breaking load and calculated flexural strength of a rectangular cross section of a preformed block-type thermal insulation tested as a simple beam. It is also applicable to cellular plastics. Two test methods are described as follows:1.1.1 Test Method I—A loading system utilizing center loading on a simply supported beam, supported at both ends.1.1.2 Test Method II—A loading system utilizing two symmetric load points equally spaced from their adjacent support points at each end with a distance between load points of one half of the support span.1.2 Either test method is capable of being used with the four procedures that follow:1.2.1 Procedure A—Designed principally for materials that break at comparatively small deflections.1.2.2 Procedure B—Designed particularly for those materials that undergo large deflections during testing.1.2.3 Procedure C—Designed for measuring at a constant stress rate, using a CRL (constant rate of loading) machine. Used for breaking load measurements only.1.2.4 Procedure D—Designed for measurements at a constant crosshead speed, using either a CRT (constant rate of traverse) or CRE (constant rate of extension) machine. Used for breaking load measurements using a fixed crosshead speed machine.1.3 Comparative tests are capable of being run according to either method or procedure, provided that the method or procedure is found satisfactory for the material being tested.1.4 These test methods are purposely general in order to accommodate the widely varying industry practices. It is important that the user consult the appropriate materials specification for any specific detailed requirements regarding these test methods.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are provided for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 101.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
66 条记录,每页 15 条,当前第 2 / 5 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页