微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 260元 / 折扣价: 221 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0

在线阅读 收 藏
AS 1896-1976 Method of test for ignition temperature of gases and vapours 现行 发布日期 :  1976-07-01 实施日期 : 

定价: 605元 / 折扣价: 515

在线阅读 收 藏

5.1 This test method is used to measure chemical permeation through specimens of protective clothing under the condition of intermittent contact of a test chemical with the specimen. In many applications, protective clothing is contacted intermittently to chemicals, not continuously as is tested by Test Method F739.5.2 This test method is normally used to evaluate flat specimens and seams from finished items of protective clothing and of materials that are candidates for items of protective clothing.5.2.1 Finished items of protective clothing include gloves, sleeves, aprons, suits, coveralls, hoods, boots, respirators, and the like.5.2.2 The phrase “specimens from finished items” encompasses seams or other discontinuous regions as well as continuous regions of protective clothing items.5.2.3 Selected seams for testing are representative of seams used in the principal construction of the protective clothing item and typically include seams of both the base material and where the base material is joined with other types of materials.5.3 In some cases, it may be of interest to compare permeation behaviors that occur under conditions of intermittent contact with those that occur during continuous contact. Test Method F739 is recommended for measuring permeation under the conditions of continuous contact of the test chemical with the protective clothing specimen.5.4 The breakthrough detection time, standardized breakthrough time, and the cumulative permeation are key measures of the effectiveness of a clothing material to be a barrier to the test chemical. Such information is used in the comparison of clothing materials during the process of selecting clothing for protection from hazardous chemicals. Long breakthrough detection times and standardized breakthrough times and low amounts of cumulative permeation are characteristics of more effective barrier materials than materials with higher permeation characteristics.NOTE 1: At present, there is limited quantitative information about acceptable levels of dermal contact with most chemicals. Therefore, the data obtained using this test method cannot be used to infer safe exposure levels.5.4.1 The reporting of a standardized breakthrough time greater than a specific time period does not mean that no chemical permeated through the protective clothing material since the standard breakthrough time is determined based on the permeation rate reaching a level of 0.1 μg/cm2/min. Some chemical had already permeated the specimen prior to the reported standardized breakthrough time.5.4.2 The reporting of cumulative permeation over a specified test period is another means to report barrier performance of protective clothing for resistance to permeation. This measurement quantifies the total amount of chemical that passed through a known area of the material during the specified test period.NOTE 2: It is possible to relate cumulative permeation test results to the total amount of chemical to which an individual wearer may be exposed by accounting for the exposed surface area and the underlying air layer. This information has potential value when there are known maximum permitted skin exposure doses for specific chemicals.5.5 The sensitivity of the test method in detecting low permeation rates or amounts of the test chemical permeated is determined by the combination of: (1) the analytical technique and collection system selected, and (2) the ratio of material specimen area to collection medium volume or flow rate.5.5.1 The analytical technique employed shall be capable of measuring the concentration of the test chemical in the collection medium at or below 0.05 μg/cm2/min.5.5.2 Often, permeation tests will require measurement of the test chemical over several orders of magnitude in concentration, requiring adjustments in either the sample collection volume or concentration/dilution, or the analytical instrument settings over the course of the test.5.5.3 Higher ratios of material specimen area to collection medium volume or flow rate permit earlier detection of permeation because higher concentrations of the test chemical in the collection medium will develop in a given time period, relative to those that would occur at lower ratios.5.5.4 The sensitivity of an open-loop system is characterized by its minimum detectable permeation rate. A method for determining this value is presented in Appendix X1.5.5.5 The sensitivity of a closed-loop system is characterized by its minimum detectable mass permeated.5.6 Comparison of results of tests performed with different permeation test systems requires specific information on the test cell, procedures, contact and purge times, and analytical techniques. Results obtained from closed-loop and open-loop testing may not be directly comparable.5.7 While this method specifies standardized breakthrough time as the time at which the permeation rate reaches 0.1 μg/cm2/min, it is acceptable to continue the testing and also report a normalized breakthrough time at a permeation rate of 1.0 µg/cm2/min.5.7.1 It is permitted to terminate tests early if there is catastrophic permeation of the chemical through the protective clothing material and the rate of permeation could overwhelm the capability of the selected analytical technique.5.8 A group of chemicals that is commonly used in permeation testing is given in Guide F1001.5.9 Guide F1194 provides a recommended approach for reporting permeation test results.1.1 This test method measures the permeation of liquids and gases through protective clothing materials under the condition of intermittent contact.1.2 This test method is designed for use when the test chemical is a gas or a liquid, where the liquid is either volatile (that is, having a vapor pressure greater than 1 mm Hg at 25 °C) or soluble in water or another liquid that does not interact with the clothing material.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides a means of controlling smoke production in home heating equipment to an acceptable level. Excessive smoke density adversely affects efficiency by heat-exchanger fouling.5.2 The range of smoke densities covered by this test method is that which has been found particularly pertinent to home-heating application. It is more sensitive to small amounts of smoke than several other smoke tests as indicated in the following comparison:Smoke SpotNumber Icham, percentTransmission RingelmanSmoke Number0 100 02  95 04  80 06  54 08  18 09   0 09   0 0 to 51.1 This test method covers the evaluation of smoke density in the flue gases from burning distillate fuels. It is intended primarily for use with home heating equipment burning kerosine or heating oils. It can be used in the laboratory or in the field to compare fuels for clean burning or to compare heating equipment.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Arbitrary and relative units are also used.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 This test method relates efficiency of operation of domestic heating equipment to clean burning. Reducing combustion air in a burner gives more efficient operation. The extent to which combustion air can be reduced is limited by the onset of unacceptable smoke production. By delineating the relation between smoke density and air supply, this test method (together with net stack temperature data) defines the maximum efficiency for a given installation at any acceptable smoke level.5.2 For certain types of equipment, such as the rotary wall-flame burner, too much excess air will cause smoke as well as too little. For these cases, the point of minimum excess air at the acceptable smoke level indicates the optimum efficiency.5.3 The operating temperatures of the equipment will affect these test results. The relation of excess air to smoke density is thus susceptible to some change at different points in an operating cycle. In practice, an adequate compromise is possible by operating the burner for 15 min before any readings are recorded and then obtaining the test data within a succeeding 25 min period.5.4 Under laboratory conditions, CO2 readings are reproducible to ±0.3 % and smoke readings are reproducible to ±1/2 smoke spot number.1.1 This test method covers the evaluation of the performance of distillate fuels from the standpoint of clean, efficient burning. It is intended primarily for use with home heating equipment burning No. 1 or No. 2 fuel oils. It can be used either in the laboratory or in the field to compare fuels using a given heating unit or to compare the performance of heating units using a given fuel.NOTE 1: This test method applies only to pressure atomizing and rotary-type burners.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.2.1 Arbitrary and relative units are also used.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Control over the residue content (required by Specification D1835) is of considerable importance in end-use applications of LPG. In liquid feed systems, residues can lead to troublesome deposits and, in vapor withdrawal systems, residues that are carried over can foul regulating equipment. Residues that remain in vapor-withdrawal systems will accumulate, can be corrosive, and will contaminate subsequent product. Water, particularly if alkaline, can cause failure of regulating equipment and corrosion of metals.5.2 See Appendix X2 for information on the effect of temperature on the measurement of residue in LPG.1.1 This test method covers the determination of extraneous materials weathering above 38 °C that are present in liquefied petroleum gases. The extraneous materials will generally be dissolved in the LPG, but may have phase-separated in some instances.1.2 Liquefied petroleum gases that contain certain anti-icing additives can give erroneous results by this test method.1.3 Although this test method has been used to verify cleanliness and lack of heavy contaminants in propane for many years, it might not be sensitive enough to protect some equipment from operational problems or increased maintenance. A more sensitive test, able to detect lower levels of dissolved contaminants, could be required for some applications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The hydrocarbon component distribution of liquefied petroleum gases and propene mixtures is often required for end-use sale of this material. Applications such as chemical feed stocks or fuel require precise compositional data to ensure uniform quality. Trace amounts of some hydrocarbon impurities in these materials can have adverse effects on their use and processing.5.2 The component distribution data of liquefied petroleum gases and propene mixtures can be used to calculate physical properties such as relative density, vapor pressure, and motor octane (see Practice D2598). Precision and accuracy of compositional data are extremely important when these data are used to calculate various properties of these petroleum products.1.1 This test method covers the quantitative determination of individual hydrocarbons in liquefied petroleum (LP) gases and mixtures of propane and propene, excluding high-purity propene in the range of C1 to C5. Component concentrations are determined in the range of 0.01 % to 100 % by volume.1.2 This test method does not fully determine hydrocarbons heavier than C5 and non-hydrocarbon materials, and additional tests may be necessary to fully characterize an LPG sample.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Oil and oil-immersed electrical insulation materials may decompose under the influence of thermal and electrical stresses, and in doing so, generate gaseous decomposition products of varying composition which dissolve in the oil. The nature and amount of the individual component gases that may be recovered and analyzed may be indicative of the type and degree of the abnormality responsible for the gas generation. The rate of gas generation and changes in concentration of specific gases over time are also used to evaluate the condition of the electric apparatus.NOTE 1: Guidelines for the interpretation of gas-in-oil data are given in IEEE C57.104.1.1 This test method covers three procedures for extraction and measurement of gases dissolved in electrical insulating oil having a viscosity of 20 cSt (100 SUS) or less at 40°C (104°F), and the identification and determination of the individual component gases extracted. Other methods have been used to perform this analysis.1.2 The individual component gases that may be identified and determined include:  Hydrogen—H2  Oxygen—O2  Nitrogen—N2  Carbon monoxide—CO  Carbon dioxide—CO2  Methane—CH4  Ethane—C2H6  Ethylene—C2H4  Acetylene—C2H2  Propane—C3H8  Propylene—C3H61.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements see 6.1.8, 30.2.2 and 30.3.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 Because of the loss of life in fires from inhalation of fire gases, much attention has been focused on the analyses of these species. Analysis has involved several new or modified methods, since common analytical techniques have often proven to be inappropriate for the combinations of various gases and low concentrations existing in fire gas mixtures.4.2 In the measurement of fire gases, it is imperative to use procedures that are both reliable and appropriate to the unique atmosphere of a given fire environment. To maximize the reliability of test results, it is essential to establish the following:4.2.1 That gaseous samples are representative of the compositions existing at the point of sampling,4.2.2 That transfer and pretreatment of samples occur without loss, or with known efficiency, and4.2.3 That data provided by the analytical instruments are accurate for the compositions and concentrations at the point of sampling.4.3 This document includes a comprehensive survey that will permit an individual, technically skilled and practiced in the study of analytical chemistry, to select a suitable technique from among the alternatives. It will not provide enough information for the setup and use of a procedure (this information is available in the references).4.4 Data generated by the use of techniques cited in this document should not be used to rank materials for regulatory purposes.1.1 Analytical methods for the measurement of carbon monoxide, carbon dioxide, oxygen, nitrogen oxides, sulfur oxides, carbonyl sulfide, hydrogen halides, hydrogen cyanide, aldehydes, and hydrocarbons are described, along with sampling considerations. Many of these gases may be present in any fire environment. Several analytical techniques are described for each gaseous species, together with advantages and disadvantages of each. The test environment, sampling constraints, analytical range, and accuracy often dictate use of one analytical method over another.1.2 These techniques have been used to measure gases under fire test conditions (laboratory, small scale, or full scale). With proper sampling considerations, any of these methods could be used for measurement in most fire environments.1.3 This document is intended to be a guide for investigators and for subcommittee use in developing standard test methods. A single analytical technique has not been recommended for any chemical species unless that technique is the only one available.1.4 The techniques described herein can be used to determine the concentration of a specific gas in the total sample collected for analysis. These techniques do not determine the total amount of fire gases that would be generated by a specimen during a fire test.1.5 This standard is used to measure and describe the response of materials, products, or assembles to heat and flame under controlled conditions but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The autoignition temperature (AIT) of a gas mixture is the minimum temperature at which a gas mixture spontaneously ignites without an external ignition source. AIT is typically determined at atmospheric pressure, using small test vessels open to the atmosphere where gas is quickly injected into the test vessel and heated for a pre-determined time observing ignition or non-ignition (Test Method E659). AIT is often not directly applicable to real world conditions. Therefore, there is need for a test that determines if a gas or liquefied gas ignites or does not ignite when released onto a hot surface in a more unconstrained environment.1.1 This test method covers a means for the discrimination between gases, which will ignite or not ignite when impinged on a hot surface when that surface is heated to 800 °C (1472 °F) or greater for a period of 2 min in a non-confined environment.1.2 This test method may be applied to any non-pyrophoric substance that is a gas or liquefied gas, particularly GHS category 1B gases, at ambient temperature and pressure.1.3 This test method should be used subject to the limitations that no single fire hazard property such as flash point, auto-ignition temperature (AIT), or the performance under the conditions of the present method shall be used to describe or appraise the fire hazard or fire risk of a material, product, assembly, or system under actual fire conditions. Fire hazard properties measured under controlled laboratory conditions may nevertheless be employed to describe properly the response of materials, products, assemblies, or systems under said controlled conditions. Properties measured under controlled laboratory conditions may be used as elements of hazard or risk assessment only when such assessments takes into account all of the factors that are pertinent to the evolution of the fire hazard of a given situation.1.4 This standard is used to provide a quantitative measure of a gas’s or liquefied gas’s realistic surface ignition temperature in a non-quiescent environment.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the limiting oxygen (oxidant) concentration is needed for safe operation of some chemical processes. This information may be needed in order to start up or operate a reactor while avoiding the creation of flammable gas compositions therein, or to store or ship materials safely. NFPA 69 provides guidance for the practical use of LOC data, including the appropriate safety margin to use.5.2 Examples of LOC data applications can be found in references (3-5).NOTE 2: The LOC values reported in references (6-8), and relied upon by a number of modern safety standards (such as NFPA 69 and NFPA 86) were obtained mostly in a 5-cm diameter flammability tube. This diameter may be too small to mitigate the flame quenching influence impeding accurate determination of the LOC of most fuels. The 4-L minimum volume specified in Section 7 would correspond to a diameter of at least 20 cm. As a result, some LOC values determined using these test methods are approximately 1.5 vol % lower than the previous values measured in the flammability tube, and are more appropriate for use in fire and explosion hazard assessment studies.5.3 Much of the previous literature LOC data (6-8) were measured in the flammability tube.5.4 Accepted LOC values (when nitrogen is the inert gas) determined for the five reference gases using these test methods in 20-L and 120-L test enclosures have been reported in Zlochower (9), and are summarized below:Hydrogen—4.6 % in 120-L, 4.7 % in 20-LCarbon Monoxide—5.1 % in 120-LMethane—11.1 % in 120-L, 10.7 % in 20-LEthylene—8.5 % in 120-L, 8.6 % in 20-LPropane—10.7 % in 120-L, 10.5 % in 20-LNOTE 3: For carbon monoxide, results are sensitive to the humidity of the test mixture in the enclosure. Presence of a small concentration of water vapor facilitates combustion and promotes flame propagation by supplying the hydrogen (H) and hydroxyl (OH) free radicals for the chain branching reactions. For conservative results, provisions are made to humidify the test air to near saturation.5.5 These test methods are often used to determine the LFL (lower flammability limit) and UFL (upper flammability limit) of gases and vapors initially at or near atmospheric pressure. Accepted LFL and UFL values determined for the five reference gases using these test methods have been reported in Zlochower (9).5.6 These test methods are also used to determine the maximum content of flammable gas which, when mixed with specified inert gas, is not flammable in air (ISO 10156, CGA P-23).5.7 A minimum purity of 99 % is recommended for the standard reference gases used for the commissioning (qualification) of the test apparatus and for the periodic verification of data quality.1.1 These test methods cover the determination of the limiting oxygen (oxidant) concentration of mixtures of oxygen (oxidant) and inert gases with flammable gases and vapors at a specified initial pressure and initial temperature.1.2 These test methods may also be used to determine the limiting concentration of oxidizers other than oxygen.1.3 Differentiation among the different combustion regimes (such as the hot flames, cool flames, and exothermic reactions) is beyond the scope of these test methods.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 These test methods should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
86 条记录,每页 15 条,当前第 2 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页