微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 Inclinometer monitoring programs often run several years or more. During this time, hundreds of surveys can be collected. Each new survey is processed by comparing it to a baseline survey.4.2 Over a period of years, normal wear and tear can gradually degrade the probe’s ability to produce new surveys that are directly comparable to the baseline survey. This may go unnoticed for some time, because the quality of readings may degrade in very small increments.4.3 When function tests are incorporated into an inclinometer monitoring program, the degradation of reading quality can be avoided. Probes that pass the tests can be used with confidence. Probes that fail the tests shall be returned to the probe manufacturer for servicing. It shall be noted that manufacturers calibrate inclinometer probes using high-precision, electronically-controlled equipment in temperature-controlled environments. Ordinary users do not have access to such equipment, so the pass/fail criteria suggested for these tests accommodate typical results produced by less precise equipment in a less controlled environment.NOTE 1: The quality of the result produced by this standard is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This practice describes three function tests that together can be used to verify that a vertical traversing inclinometer probe is working properly.1.2 This practice does not address calibration routines, electronic diagnostics, or repair of the probe, nor does it address inspection of the probe’s mechanical parts.1.3 This practice is not intended to replace manufacturers’ recommendations for servicing and calibration of inclinometer equipment, nor is it intended to replace maintenance and calibration schedules established by users as part of their quality programs.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Puncture using a 50 mm probe is applicable to determine the index strength resistance and deformation of a particular geotextile or geotextile-related products.5.2 This test method is considered satisfactory for acceptance testing of commercial shipments of geotextiles.5.3 In case of a dispute arising from differences in reported test results when using this test method for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of the type in question. The test specimens then should be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using Student's t-test for unpaired data and an acceptable probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected, or the purchaser and the supplier must agree to interpret future test results in light of the known bias.5.4 This test method is not applicable to materials that are manufactured in sizes that are too small to be placed into the test apparatus in accordance with the procedures in this test method. Furthermore, it is not appropriate to separate plies of a geosynthetic or geocomposite for use in this test method.1.1 This test method is an index test used to measure the force required to puncture a geotextile and geotextile-related products with a 50 mm diameter cylindrical probe. The dimensions of the probe provide a multidirectional force on the geotextile.NOTE 1: This test is also commonly known as CBR Puncture Test.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method is useful as a rapid, nondestructive technique for the measurement of the in-place water mass per unit volume of soil and rock at desired depths below the surface.5.2 This test method is useful for informational and research purposes. The information acquired from this test method is best used for quality control and acceptance testing when correlated to actual water mass per unit volume using procedures and methods described in A1.2.3.5.3 The non-destructive nature of this test method allows repetitive measurements to be made at a single test location for statistical analysis and to monitor changes over time.5.4 The fundamental assumptions inherent in this test method are that the material under test is homogeneous and hydrogen present is in the form of water as defined by Test Method D2216.NOTE 1: The quality of the result produced by this standard test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection, and the like. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the measurement of the water mass per unit volume of soil and rock by thermalization or slowing of fast neutrons, where the neutron source and the thermal neutron detector are placed at the desired depth in the bored hole lined by an access tube.1.1.1 For limitations see Section 6 on Interferences.1.2 The water mass per unit volume, expressed as mass per unit volume of the material under test, is determined by comparing the thermal neutron count rate with previously established calibration data (see Annex A1).1.3 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. Within the text of this standard, SI units appear first followed by the inch-pound (or other non-SI) units in brackets.1.3.1 Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected, recorded, and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazards are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The soil permittivity probe is used for the following purposes:5.1.1 The test method described is useful as a rapid, nondestructive technique for bulk measurements of the water mass per unit volume of soil and soil-aggregate which may, in conjunction with an independent bulk density determination, be used in the determination of dry density.5.1.2 The test method is used for quality control and acceptance testing of compacted soil and soil-aggregate mixtures as used in construction and also for research and development. The nondestructive nature allows repetitive measurements at a single test location and statistical analysis of the results.5.1.3 Volumetric Water Content—The fundamental assumptions inherent in the test method are that the dielectric constants value measured by the system in a given test site composed of soil or soil-aggregate are directly correlated to the volumetric water content of the soil or soil-aggregate, and that the material is homogeneous. (See 6, “Interferences.”)NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method describes the procedures for measuring the water mass per unit volume of soil and soil-aggregate by use of an in situ permittivity probe. Measurements are taken at a depth beneath the surface of the soil determined by the design of the probe.1.1.1 For limitations see Section 6 on Interferences.1.2 The permittivity probe is inserted into a hole drilled or punched into the soil being measured. As its name indicates, the probe measures the dielectric permittivity of the soil into which it is placed. Two electrodes, connected to an oscillating circuit, are mounted a predetermined distance apart. These electrodes act as the plates of a capacitor, with the soil between the plates forming the capacitor dielectric.1.2.1 The probe circuit creates an oscillating electric field in the soil. Changes in the dielectric permittivity of the soil are indicated by changes in the circuit’s operating frequency. Since water has a much higher dielectric constant (80) than the surrounding soil (typically around 4), the water content can be related by a mathematical function to the change in dielectric permittivity, and, consequently, the changes in the circuit’s operating frequency.1.2.2 The construction, deployment, and operating principle of the device described in this test method differ from other methods that measure the dielectric constant, bulk electrical conductivity, complex impedance, or electromagnetic impedance (see Test Methods D6780/D6780M, D7698, and D7830/D7830M) of the soil and relate the results to water mass per unit volume and/or water content.1.2.3 The water content of the soil measured by the permittivity probe is the volumetric water content, expressed as the ratio of the volume of water to the total volume occupied by the soil. This quantity is often converted, and displayed, by the probe in units of mass of water per volume of soil, or water mass per unit volume. This conversion is performed by multiplying the water content (in volume of water per volume of soil) by the density of water.1.3 Water content most prevalent in engineering and construction activities is known as the gravimetric water content, ω, and is the ratio of the mass of the water in pore spaces to the total mass of solids, expressed as a percentage. To determine this quantity, the bulk density of the soil under measurement must also be determined.1.4 Units—The values stated in SI units are to be regarded as the standard. Reporting the test results in units other than SI shall not be regarded as nonconformance with this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.5.1 For purposes of comparing, a measured or calculated value(s) with specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.5.2 The procedures used to specify how data are collected/recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method provides a quantitative measure of the pressure-sensitive tack of the adhesive.5.2 The method is designed for the adhesive mass itself and is suitable for measuring the tack of pressure-sensitive adhesives for use on both rigid and flexible backings.5.3 This test method is suitable for quality control and research purposes.1.1 This test method covers measurement of the pressure-sensitive tack of adhesives. This test method is applicable to those adhesives which form a bond of measurable strength rapidly upon contact with another surface and which can be removed from that surface cleanly, that is, without leaving a residue visible to the eye. For such adhesives, tack may be measured as the force required to separate an adhesive and the adherend at the interface shortly after they have been brought into contact under a defined load of known duration at a specified temperature.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method covers the measurement of the sheet resistance of metallic thin films with a collinear four-probe array. It is intended for use with rectangular metallic films formed by deposition of a material or by a thinning process and supported by an insulating substrate. This test method is suitable for referee measurement purposes as well as for routine acceptance measurements. A collinear four-probe array is used to determine the sheet resistance by passing a measured direct current through the specimen between the outer probes and measuring the resulting potential difference between the inner probes. The sheet resistance is calculated from the measured current and potential values using correction factors associated with the geometry of the specimen and the probe spacing. The accuracy of the electrical measuring equipment is tested by means of an analog circuit containing a known standard resistor together with other resistors which simulate the resistance at the contacts between the probe tips and the film surface.1.1 This test method covers the measurement of the sheet resistance of metallic thin films with a collinear four-probe array. It is intended for use with rectangular metallic films between 0.01 and 100 [mu]m thick, formed by deposition of a material or by a thinning process and supported by an insulating substrate, in the sheet resistance range from 10 to 10 [omega]/[open-box] (see 3.1.3). 1.2 This test method is suitable for referee measurement purposes as well as for routine acceptance measurements. 1.3 The values stated in Si units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 The thermal conductivity of intact soil specimens, reconstituted soil specimens, and rock specimens is used to analyze and design systems involving underground transmission lines, oil and gas pipelines, radioactive waste disposal, geothermal applications, and solar thermal storage facilities, among others. Measurements can be made on site (in situ), or samples can be tested in a lab environment.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing. Users of this standard are cautioned that compliance with Practice D3740 does not in itself ensure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method presents a procedure for determining the thermal conductivity (λ) of soil and rock using a transient heat method. This test method is applicable for both intact specimens of soil and rock and reconstituted soil specimens, and is effective in the lab and in the field. This test method is most suitable for homogeneous materials, but can also give a representative average value for non-homogeneous materials.1.2 This test method is applicable to dry, unsaturated or saturated materials that can sustain a hole for the sensor. It is valid over temperatures ranging from <0 to >100°C, depending on the suitability of the thermal needle probe construction to temperature extremes. However, care must be taken to prevent significant error from: (1) redistribution of water due to thermal gradients resulting from heating of the needle probe; (2) redistribution of water due to hydraulic gradients (gravity drainage for high degrees of saturation or surface evaporation); (3) phase change of water in specimens with temperatures near 0°C or 100°C.1.3 Units—The values stated in SI units are to be regarded as the standard. No other units of measurements are included in this standard. Reporting of test results in units other than SI shall not be regarded as nonconformance with this standard.1.4 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.4.1 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analytical methods for engineering design.NOTE 1: This test method is also applicable and commonly used for determining thermal conductivity of a variety of engineered porous materials of geologic origin including concrete, Fluidized Thermal Backfill (FTB), and thermal grout.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

Moisture permeating from concrete floor slabs affects the performance of flooring systems such as resilient, wood, textile floor coverings and resinous coatings. Manufacturers of such systems generally require humidity/moisture testing be performed before installation over concrete floor slabs. The measurement of relative humidity (RH) directly above the porous surfaces of a floor slab is one such method.Excessive moisture in or emitting from floor slabs after installation can cause floor covering system failures such as delamination, bonding failure, deterioration of finish flooring and coatings, and microbial growth.The surface RH Hood (relative humidity) test method is intended to quantify the relative humidity condition that exists at the surface of a floor slab to which a floor covering or coating shall be applied. Results indicate moisture content conditions at the time of the test, as moisture movement within the slab is dynamic. See A1.4 for reference to some methods of determining moisture/humidity levels in a concrete slab.1.1 This test method covers the quantitative determination of percent relative humidity above the surface of concrete floor slabs for field or laboratory tests.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Some specific warnings are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏
32 条记录,每页 15 条,当前第 2 / 3 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页