This specification covers lightweight aggregates intended for use in structural concrete in which prime considerations are reducing the density while maintaining the compressive strength of the concrete. Procedures covered in this specification are not intended for job control of concrete. Two general types of lightweight aggregates are covered by this specification: aggregates prepared by expanding, pelletizing, or sintering products such as blast-furnace slag, clay, diatomite, fly ash, shale, or slate; and aggregates prepared by processing natural materials, such as pumice, scoria, or tuff. The aggregates shall be composed predominately of lightweight-cellular and granular inorganic material. Lightweight aggregates shall be tested, and should not contain excessive amounts of deleterious substances; and should conform to the specified values of organic impurities, aggregate staining, aggregate loss of ignition, clay lumps and friable particles, loose bulk density, compressive strength, drying shrinkage, popouts, and resistance to freezing and thawing.1.1 This specification covers lightweight aggregates intended for use in structural concrete in which prime considerations are reducing the density while maintaining the compressive strength of the concrete. Procedures covered in this specification are not intended for job control of concrete.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.2.1 With regard to other units of measure, the values stated in inch-pound units are to be regarded as standard.1.3 The text of this specification references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.NOTE 1: This specification is regarded as adequate to ensure satisfactory lightweight aggregates for most concrete. It is recognized that it may be either more or less restrictive than needed for some conditions and for special purposes, such as fire resistance, fill, and concrete constructions, the use of which is based on load tests rather than conventional design procedures.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
This specification covers lightweight aggregates intended for use in concrete not exposed to the weather, in which the prime consideration is the thermal insulating property of the resulting concrete. Two general types of lightweight aggregate are group I aggregates, which are prepared by expanding products, such as perlite or vermiculite, and group II aggregates which are prepared by expanding, calcining, or sintering products such as blast-furnace slag, clay, diatomite, fly ash, shale, or slate; and aggregates prepared by processing natural materials, such as pumice, scoria, or tuff. The thermal insulating properties of concrete made from the lightweight aggregate under test shall conform to the maximum average thermal conductivity indicated in the specification. To ensure reasonable uniformity in the gradation of successive shipments of lightweight aggregates, fineness modulus determination shall be made periodically. The aggregate shall be composed predominantly of lightweight cellular and granular inorganic material. The test methods for insulating concrete properties include specimen preparation, then concrete density determination, and determinacy of thermal conductivity. When lightweight aggregates covered by this specification are delivered in packages, the name of the manufacturer, type of aggregate, and minimum mass and approximate volume of the contents shall be plainly indicated thereon.1.1 This specification covers lightweight aggregates intended for use in concrete not exposed to the weather, in which the prime consideration is the thermal insulating property of the resulting concrete.1.2 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.3 With regard to sieve size and the size of aggregate as determined by the use of testing sieves, the values in inch-pound units are shown for the convenience of the user; however, the standard sieve designation shown in parentheses is the standard value as stated in Specification E11.1.3.1 With regard to other units of measure, the values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 The following precautionary caveat pertains only to the test method portion, Section 7, of the specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
1.1 This standard is a compilation of definitions of terms as they are used in standards under the jurisdiction of Committee C09.1.2 Other terminology under the jurisdiction of Committee C09 is included in two specialized standards. Terms relating to constituents of concrete aggregates are defined in Descriptive Nomenclature C294. Terms relating to constituents of aggregates for radiation-shielding concrete are defined in Descriptive Nomenclature C638.1.3 Related terminology for hydraulic cement is included in Terminology C219. In the event of conflict between definitions in Terminology C125 and definitions in Terminology C219, definitions in Terminology C125 shall govern for Committee C09 standards.1.4 When a term is used in an ASTM standard for which Committee C09 is responsible, it is included herein only if used in more than one Committee C09 standard.NOTE 1: The subcommittee responsible for this standard will review definitions on a five-year basis to determine if the definition is still appropriate as stated. Revisions will be made when determined necessary. The year shown in parentheses at the end of a definition indicates the year the definition or revision to the definition was approved. A letter R and a year indicate when the definition was reviewed. No date indicates the term has not yet been reviewed.1.5 This terminology includes notes and discussions to definitions that provide supplementary or explanatory information. These notes and discussions shall not be considered as requirements of this standard nor as parts of the definitions.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 This descriptive nomenclature provides information on terms commonly applied to concrete aggregates. This standard is intended to assist in understanding the meaning and significance of the terms.4.2 Many of the materials described frequently occur in particles that do not display all the characteristics given in the descriptions, and most of the described rocks grade from varieties meeting one description to varieties meeting another with all intermediate stages being found.4.3 The accurate identification of rocks and minerals can, in many cases, be made only by a qualified geologist, mineralogist, or petrographer using the apparatus and procedures of these sciences. Reference to these descriptions may, however, serve to indicate or prevent gross errors in identification. Identification of the constituent materials in an aggregate may assist in characterizing its engineering properties, but identification alone cannot provide the sole basis for predicting behavior of aggregates in service. Aggregates of any type or combination of types may perform well or poorly in service depending upon the exposure to which the concrete is subjected, the physical and chemical properties of the matrix in which they are embedded, their physical condition at the time they are used, and other factors. Constituents that may occur only in minor amounts in the aggregate may or may not decisively influence its performance. Information about concrete aggregate performance in concrete has been published by ASTM.41.1 This descriptive nomenclature provides brief descriptions of some of the more commonly occurring, or more important, natural and artificial materials of which mineral aggregates are composed. The descriptions provide a basis for understanding these terms as applied to concrete aggregates. When appropriate, brief observations regarding the potential effects of using the natural and artificial materials in concrete are discussed.NOTE 1: These descriptions characterize minerals and rocks as they occur in nature and blast-furnace slag or lightweight aggregates that are prepared by the alteration of the structure and composition of natural material. Information about lightweight aggregates is given in Specifications C330, C331, and C332.1.2 This standard does not include descriptions of constituents of aggregates used in radiation shielding concrete. See Descriptive Nomenclature C638.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Petrographic examinations are made for the following purposes:5.1.1 To determine the physical and chemical characteristics of the material that may be observed by petrographic methods and that have a bearing on the performance of the material in its intended use.5.1.2 To describe and classify the constituents of the sample,5.1.3 To determine the relative amounts of the constituents of the sample that are essential for proper evaluation of the sample when the constituents differ significantly in properties that have a bearing on the performance of the material in its intended use, and5.1.4 To compare samples of aggregate from new sources with samples of aggregate from one or more sources, for which test data or performance records are available.5.2 This guide may be used by a petrographer employed directly by those for whom the examination is made. The employer should tell the petrographer, in as much detail as necessary, the purposes and objectives of the examination, the kind of information needed, and the extent of examination desired. Pertinent background information, including results of prior testing, should be made available. The petrographer's advice and judgment should be sought regarding the extent of the examination.5.3 This guide may form the basis for establishing arrangements between a purchaser of consulting petrographic service and the petrographer. In such a case, the purchaser and the consultant should together determine the kind, extent, and objectives of the examination and analyses to be made, and should record their agreement in writing. The agreement may stipulate specific determinations to be made, observations to be reported, funds to be obligated, or a combination of these or other conditions.5.4 Petrographic examination of aggregate considered for use in hydraulic-cement concrete is one aspect of the evaluation of aggregate, but petrographic examination is also used for many other purposes. Petrographic examinations provide identification of types and varieties of rocks present in potential aggregates. However, as noted above, identification of every rock and mineral present in an aggregate source is not required.5.5 The petrographic examination should establish whether the aggregate contains chemically unstable minerals (such as soluble sulfates) or volumetrically unstable materials, such as smectites (formerly known as the montmorillonite-saponite group of minerals or swelling clays). Specifications may limit the quartz content of aggregates for use in concrete that may be subject to high temperature (purposefully or accidentally) because of the conversion to beta-quartz at 573 °C [1063 °F], with accompanying volume increase.5.6 The petrographic examination should establish whether the aggregate contains iron sulfide minerals that may potentially oxidize within the concrete. Pyrite, marcasite, or pyrrhotite may cause popouts and rust staining if present near the surface of the concrete. Pyrrhotite within some rock types, in the presence of moisture, has been found to oxidize and expand causing significant cracking within concrete. Oxidation of iron sulfide minerals within concrete can lead to sulfuric acid attack, sulfate attack, or both.5.7 Petrographic examination should identify the portion of each coarse aggregate that is composed of weathered or otherwise altered particles and the extent of that weathering or alteration, whether it is severe, moderate, or slight, and should determine the proportion of each rock type in each condition. If the concrete in which the aggregate may be used will be exposed to freezing and thawing in a critically saturated condition, finely porous and highly weathered or otherwise altered rocks should be identified because they will be especially susceptible to damage by freezing and thawing and will cause the aggregate portion of the concrete to fail in freezing and thawing. This will ultimately destroy the concrete because such aggregates cannot be protected by adequately air-entrained mortar. Finely porous aggregates near the concrete surface are also likely to form popouts, which are blemishes on pavements and walls.5.8 Petrographic examinations may also be used to determine the proportions of cubic, spherical, ellipsoidal, pyramidal, tabular, flat, and elongated particles in an aggregate sample or samples. Flat, elongated, and thin chip-like particles in aggregate increase the mixing water requirement and hence decrease concrete strength.5.9 Petrographic examination should identify and call attention to potentially alkali-silica reactive and alkali-carbonate reactive constituents, determine such constituents quantitatively, and recommend additional tests to confirm or refute the presence in significant amounts of aggregate constituents capable of alkali reaction in concrete. See Specification C33/C33M. Alkali-silica reactive constituents found in aggregates include: opal, chalcedony, cristobalite, tridymite, highly strained quartz, microcrystalline quartz, cryptocrystalline quartz, volcanic glass, and synthetic siliceous glass. Aggregate materials containing these constituents include: glassy to cryptocrystalline intermediate to acidic volcanic rocks, some argillites, phyllites, graywacke, gneiss, schist, gneissic granite, vein quartz, quartzite, sandstone, chert, and carbonate rocks containing alkali reactive forms of silica. Criteria are available for identifying the minerals in the list above by their optical properties or by XRD (2),(3). Criteria are available for identifying rocks by their mineral composition and texture (4). Examination in both reflected and transmitted light may be necessary to provide data for these identifications. X-ray microanalysis using energy-dispersive x-ray spectrometers with scanning electron microscopy (SEM/EDX) or wavelength-dispersive x-ray spectrometers in electron microprobes (EMPA/WDX) may provide useful information on the chemical composition of minerals and rocks. Potentially deleterious alkali-carbonate reactive rocks are usually calcareous dolomites or dolomitic limestones with clayey insoluble residues. Some dolomites essentially free of clay and some very fine-grained limestones free of clay and with minor insoluble residue, mostly quartz, are also capable of some alkali-carbonate reactions, however, such reactions are not necessarily deleterious.5.10 Petrographic examination may be directed specifically at the possible presence of contaminants in aggregates, such as synthetic glass, cinders, clinker, or coal ash, magnesium oxide, calcium oxide, or both, gypsum, soil, hydrocarbons, chemicals that may affect the setting behavior of concrete or the properties of the aggregate, animal excrement, plants or rotten vegetation, and any other contaminant that may prove undesirable in concrete.5.11 These objectives, for which this guide was prepared, will have been attained if those involved with the evaluation of aggregate materials for use in concrete construction have reasonable assurance that the petrographic examination results wherever and whenever obtained may confidently be compared.1.1 This guide outlines procedures for the petrographic examination of samples representative of materials proposed for use as aggregates in cementitious mixtures or as raw materials for use in production of such aggregates. This guide is based on Ref (1).21.2 This guide outlines the extent to which petrographic techniques should be used, the selection of properties that should be looked for, and the manner in which such techniques may be employed in the examination of samples of aggregates for concrete.1.3 The rock and mineral names given in Descriptive Nomenclature C294 should be used, insofar as they are appropriate, in reports prepared in accordance with this guide.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车