微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM C1145-19 Standard Terminology of Advanced Ceramics Active 发布日期 :  1970-01-01 实施日期 : 

1.1 This terminology contains definitions and explanatory notes for the principal words, phrases, and terms used in advanced ceramics technology. The given definitions are technology specific and are directly applicable to the design, production, testing, analysis, characterization, and use of advanced ceramics for structural, electronic, coating, energy, chemical, nuclear, biomedical, and environmental applications.1.2 The purpose of the standard terminology is to provide a collected technical resource and reference that promotes a common understanding of the principal technical terms used within the advanced ceramics community and encourages the use of uniform terminology in specifications and reports.1.3 Definitions of terms appear in dictionary-definition form and include the term, part of speech (for example, n = noun; v = verb; adj = adjective), definition, and, when applicable, a delimiting phrase. Terms representing physical quantities have analytical dimensions stated immediately following the term (or letter symbol) in fundamental dimension form, using the following ASTM standard symbology for fundamental dimensions, shown within square brackets: [M] for mass, [L] for length, [T] for time, [θ] for thermodynamic temperature, and [nd] for non-dimensional quantities. Use of these symbols is restricted to analytical dimensions when used with square brackets, as the terms may have other definitions when used without the brackets.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Fracture mirror size analysis is a powerful tool for analyzing glass and ceramic fractures. Fracture mirrors are tell-tale fractographic markings in brittle materials that surround a fracture origin as discussed in Practices C1256 and C1322. Fig. 1 shows a schematic with key features identified. Fig. 2 shows an example in glass. The fracture mirror region is very smooth and highly reflective in glasses, hence the name “fracture mirror.” In fact, high magnification microscopy reveals that, even within the mirror region in glasses, there are very fine features and escalating roughness as the crack advances away from the origin. These are submicrometer in size and hence are not discernable with an optical microscope. Early investigators interpreted fracture mirrors as having discrete boundaries including a “mirror-mist” boundary and also a “mist-hackle” boundary in glasses. These were also termed “inner mirror” or “outer mirror” boundaries, respectively. It is now known that there are no discrete boundaries corresponding to specific changes in the fractographic features. Surface roughness increases gradually from well within the fracture mirror to beyond the apparent boundaries. The boundaries were a matter of interpretation, the resolving power of the microscope, and the mode of viewing. In very weak specimens, the mirror may be larger than the specimen or component and the boundaries will not be present.Eq 1 is hereafter referred to as the “empirical stress – fracture mirror size relationship,” or “stress-mirror size relationship” for short. A review of the history of Eq 1, and fracture mirror analysis in general, may be found in Refs (1)3 and (2).5.5 A, the “fracture mirror constant” (sometimes also known as the “mirror constant”) has units of stress intensity (MPa√m or ksi√in.) and is considered by many to be a material property. As shown in Figs. 1 and 2, it is possible to discern separate mist and hackle regions and the apparent boundaries between them in glasses. Each has a corresponding mirror constant, A. The most common notation is to refer to the mirror-mist boundary as the inner mirror boundary, and its mirror constant is designated Ai. The mist-hackle boundary is referred to as the outer mirror boundary, and its mirror constant is designated Ao. The mirror-mist boundary is usually not perceivable in polycrystalline ceramics. Usually, only the mirror-hackle boundary is measured and only an Ao for the mirror-hackle boundary is calculated. A more fundamental relationship than Eq 1 may be based on the stress intensity factors (KI) at the mirror-mist or mist-hackle boundaries, but Eq 1 is more practical and simpler to use.5.6 The size predictions based on Eq 1 and the A values, or alternatively stress intensity factors, match very closely for the limiting cases of small mirrors in tension specimens. This is also true for small semicircular mirrors centered on surface flaws in strong flexure specimens. So, at least for some special mirror cases, A should be directly related to a more fundamental parameter based on stress intensity factors.5.7 The size of the fracture mirrors in laboratory test specimen fractures may be used in conjunction with known fracture mirror constants to verify the stress at fracture was as expected. The fracture mirror sizes and known stresses from laboratory test specimens may also be used to compute fracture mirror constants, A.5.8 The size of the fracture mirrors in components may be used in conjunction with known fracture mirror constants to estimate the stress in the component at the origin. Practice C1322 has a comprehensive list of fracture mirror constants for a variety of ceramics and glasses.1.1 This practice pertains to the analysis and interpretation of fracture mirror sizes in brittle materials. Fracture mirrors (Fig. 1) are telltale fractographic markings that surround a fracture origin in brittle materials. The fracture mirror size may be used with known fracture mirror constants to estimate the stress in a fractured component. Alternatively, the fracture mirror size may be used in conjunction with known stresses in test specimens to calculate fracture mirror constants. The practice is applicable to glasses and polycrystalline ceramic laboratory test specimens as well as fractured components. The analysis and interpretation procedures for glasses and ceramics are similar, but they are not identical. Different optical microscopy examination techniques are listed and described, including observation angles, illumination methods, appropriate magnification, and measurement protocols. Guidance is given for calculating a fracture mirror constant and for interpreting the fracture mirror size and shape for both circular and noncircular mirrors including stress gradients, geometrical effects, residual stresses, or combinations thereof. The practice provides figures and micrographs illustrating the different types of features commonly observed in and measurement techniques used for the fracture mirrors of glasses and polycrystalline ceramics.FIG. 1 Schematic of a Fracture Mirror Centered on a Surface Flaw of Initial Size (a)NOTE 1: The initial flaw may grow stably to size ac prior to unstable fracture when the stress intensity reaches KIc. The mirror-mist radius is Ri, the mist-hackle radius is Ro, and the branching distance is Rb. These transitions correspond to the mirror constants, Ai, Ao, and Ab, respectively.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites (CFCCs) are generally characterized by fine-grain sized (<50 μm) matrices and ceramic fiber reinforcements. In addition, continuous fiber-reinforced glass (amorphous) matrix composites can also be classified as CFCCs. Uniaxially loaded compressive strength tests provide information on mechanical behavior and strength for a uniformly stressed CFCC.4.3 Generally, ceramic and ceramic matrix composites have greater resistance to compressive forces than tensile forces. Ideally, ceramics should be compressively stressed in use, although engineering applications may frequently introduce tensile stresses in the component. Nonetheless, compressive behavior is an important aspect of mechanical properties and performance. The compressive strength of ceramic and ceramic composites may not be deterministic. Therefore, test a sufficient number of test specimens to gain an insight into strength distributions.4.4 Compression tests provide information on the strength and deformation of materials under uniaxial compressive stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, etc.) that may be influenced by testing mode, testing rate, effects of processing or combination of constituent materials, or environmental influences. Some of these effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of compression tests of test specimens fabricated to standardized dimensions from a particulate material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized compressive test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.7 The compressive behavior and strength of a CFCC are dependent on, and directly related to, the material. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, are recommended.1.1 This test method covers the determination of compressive strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at ambient temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Compressive strength, as used in this test method, refers to the compressive strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally characterized by crystalline matrices and ceramic fiber reinforcements are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and elevated-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate strengths of monolithic advanced ceramics, the nonuniform stress distribution of the flexure test specimen, in addition to dissimilar mechanical behavior in tension and compression for CFCCs, leads to ambiguity of interpretation of strength results obtained from flexure tests for CFCCs. Uniaxially loaded tensile strength tests provide information on mechanical behavior and strength for a uniformly stressed material.4.3 Unlike monolithic advanced ceramics that fracture catastrophically from a single dominant flaw, CFCCs generally experience “graceful” (that is, non-catastrophic, ductile-like stress-strain behavior) fracture from a cumulative damage process. Therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially loaded tensile test may not be as significant a factor in determining the ultimate strengths of CFCCs. However, the need to test a statistically significant number of tensile test specimens is not obviated. Therefore, because of the probabilistic nature of the strengths of the brittle fibers and matrices of CFCCs, a sufficient number of test specimens at each testing condition is required for statistical analysis and design. Studies to determine the influence of test specimen volume or surface area on strength distributions for CFCCs have not been completed. It should be noted that tensile strengths obtained using different recommended tensile test specimen geometries with different volumes of material in the gage sections may be different due to these volume differences.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior that may develop as the result of cumulative damage processes (for example, matrix cracking, matrix/fiber debonding, fiber fracture, delamination, and so forth) that may be influenced by testing mode, testing rate, effects of processing or combinations of constituent materials, environmental influences, or elevated temperatures. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth that can be minimized by testing at sufficiently rapid rates as outlined in this test method.4.5 The results of tensile tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire, full-size end product or its in-service behavior in different environments or various elevated temperatures.4.6 For quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for the particular primary processing conditions and post-processing heat treatments.4.7 The tensile behavior and strength of a CFCC are dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is recommended.1.1 This test method covers the determination of tensile strength, including stress-strain behavior, under monotonic uniaxial loading of continuous fiber-reinforced advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendixes. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, temperature control, temperature gradients, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial loading, where monotonic refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), and tridirectional (3D) or other multi-directional reinforcements. In addition, this test method may also be used with glass (amorphous) matrix composites with 1D, 2D, 3D, and other multi-directional continuous fiber reinforcements. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

1.1 This specification covers the requirements for fabricated alumina parts suitable for electronic and electrical applications and ceramic-to-metal seals as used in electron devices. This specification specifies limits and methods of test for electrical, mechanical, thermal, and general properties of the bodies used for these fabricated parts, regardless of part geometry.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites are generally characterized by crystalline matrices and ceramic fiber reinforcements. These materials are candidate materials for structural applications requiring high degrees of wear and corrosion resistance, and high-temperature inherent damage tolerance (that is, toughness). In addition, continuous fiber-reinforced glass matrix composites are candidate materials for similar but possibly less demanding applications. Although flexural test methods are commonly used to evaluate the mechanical behavior of monolithic advanced ceramics, the nonuniform stress distribution in a flexural test specimen in addition to dissimilar mechanical behavior in tension and compression for CFCCs leads to ambiguity of interpretation of test results obtained in flexure for CFCCs. Uniaxially loaded tensile tests provide information on mechanical behavior for a uniformly stressed material.4.3 The cyclic fatigue behavior of CFCCs can have appreciable nonlinear effects (for example, sliding of fibers within the matrix) which may be related to the heat transfer of the specimen to the surroundings. Changes in test temperature, frequency, and heat removal can affect test results. It may be desirable to measure the effects of these variables to more closely simulate end-use conditions for some specific application.4.4 Cyclic fatigue by its nature is a probabilistic phenomenon as discussed in STP 91A (1) and STP 588 (2).4 In addition, the strengths of the brittle matrices and fibers of CFCCs are probabilistic in nature. Therefore, a sufficient number of test specimens at each testing condition is required for statistical analysis and design, with guidelines for sufficient numbers provided in STP 91A (1), STP 588 (2), and Practice E739. Studies to determine the influence of test specimen volume or surface area on cyclic fatigue strength distributions for CFCCs have not been completed. The many different tensile test specimen geometries available for cyclic fatigue testing may result in variations in the measured cyclic fatigue behavior of a particular material due to differences in the volume of material in the gage section of the test specimens.4.5 Tensile cyclic fatigue tests provide information on the material response under fluctuating uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, matrix microcracking, fiber/matrix debonding, delamination, cyclic fatigue crack growth, etc.)4.6 Cumulative damage due to cyclic fatigue may be influenced by testing mode, testing rate (related to frequency), differences between maximum and minimum force (R or Α), effects of processing or combinations of constituent materials, environmental influences (including test environment and pre-test conditioning), or combinations thereof. Some of these effects may be consequences of stress corrosion or subcritical (slow) crack growth which can be difficult to quantify. Other factors which may influence cyclic fatigue behavior are: matrix or fiber material, void or porosity content, methods of test specimen preparation or fabrication, volume percent of the reinforcement, orientation and stacking of the reinforcement, test specimen conditioning, test environment, force or strain limits during cycling, wave shapes (that is, sinusoidal, trapezoidal, etc.), and failure mode of the CFCC.4.7 The results of cyclic fatigue tests of test specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the cyclic fatigue behavior of the entire, full-size end product or its in-service behavior in different environments.4.8 However, for quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.9 The cyclic fatigue behavior of a CFCC is dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. There can be significant damage in the CFCC test specimen without any visual evidence such as the occurrence of a macroscopic crack. This can result in a loss of stiffness and retained strength. Depending on the purpose for which the test is being conducted, rather than final fracture, a specific loss in stiffness or retained strength may constitute failure. In cases where fracture occurs, analysis of fracture surfaces and fractography, though beyond the scope of this practice, is recommended.1.1 This practice covers the determination of constant-amplitude, axial tension-tension cyclic fatigue behavior and performance of continuous fiber-reinforced advanced ceramic composites (CFCCs) at ambient temperatures. This practice builds on experience and existing standards in tensile testing CFCCs at ambient temperatures and addresses various suggested test specimen geometries, specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states).1.2 This practice applies primarily to advanced ceramic matrix composites with continuous fiber reinforcement: uni-directional (1-D), bi-directional (2-D), and tri-directional (3-D) or other multi-directional reinforcements. In addition, this practice may also be used with glass (amorphous) matrix composites with 1-D, 2-D, 3-D, and other multi-directional continuous fiber reinforcements. This practice does not directly address discontinuous fiber-reinforced, whisker-reinforced or particulate-reinforced ceramics, although the methods detailed here may be equally applicable to these composites.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This practice may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 High-strength, monolithic advanced ceramic materials are generally characterized by small grain sizes (<50 μm) and bulk densities near the theoretical density. These materials are candidates for load-bearing structural applications requiring high degrees of wear and corrosion resistance, and high-temperature strength. Although flexural test methods are commonly used to evaluate strength of advanced ceramics, the nonuniform stress distribution in a flexure specimen limits the volume of material subjected to the maximum applied stress at fracture. Uniaxially loaded tensile strength tests may provide information on strength-limiting flaws from a greater volume of uniformly stressed material.4.3 Cyclic fatigue by its nature is a probabilistic phenomenon as discussed in STP 91A and STP 588 (1, 2).4 In addition, the strengths of advanced ceramics are probabilistic in nature. Therefore, a sufficient number of test specimens at each testing condition is required for statistical analysis and design, with guidelines for sufficient numbers provided in STP 91A (1), STP 588 (2), and Practice E739. The many different tensile specimen geometries available for cyclic fatigue testing may result in variations in the measured cyclic fatigue behavior of a particular material due to differences in the volume or surface area of material in the gage section of the test specimens.4.4 Tensile cyclic fatigue tests provide information on the material response under fluctuating uniaxial tensile stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of cumulative damage processes (for example, microcracking, cyclic fatigue crack growth, etc.).4.5 Cumulative damage processes due to cyclic fatigue may be influenced by testing mode, testing rate (related to frequency), differences between maximum and minimum force (R or Α), effects of processing or combinations of constituent materials, or environmental influences, or both. Other factors that influence cyclic fatigue behavior are: void or porosity content, methods of test specimen preparation or fabrication,test specimen conditioning, test environment, force or strain limits during cycling, wave shapes (that is, sinusoidal, trapezoidal, etc.), and failure mode. Some of these effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be difficult to quantify. In addition, surface or near-surface flaws introduced by the test specimen fabrication process (machining) may or may not be quantifiable by conventional measurements of surface texture. Therefore, surface effects (for example, as reflected in cyclic fatigue reduction factors as classified by Marin (3)) must be inferred from the results of numerous cyclic fatigue tests performed with test specimens having identical fabrication histories.4.6 The results of cyclic fatigue tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the cyclic fatigue behavior of the entire full-size end product or its in-service behavior in different environments.4.7 However, for quality control purposes, results derived from standardized tensile test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.8 The cyclic fatigue behavior of an advanced ceramic is dependent on its inherent resistance to fracture, the presence of flaws, or damage accumulation processes, or both. There can be significant damage in the test specimen without any visual evidence such as the occurrence of a macroscopic crack. This can result in a specific loss of stiffness and retained strength. Depending on the purpose for which the test is being conducted, rather than final fracture, a specific loss in stiffness or retained strength may constitute failure. In cases where fracture occurs, analysis of fracture surfaces and fractography, though beyond the scope of this practice, are recommended.1.1 This practice covers the determination of constant-amplitude, axial, tension-tension cyclic fatigue behavior and performance of advanced ceramics at ambient temperatures to establish “baseline” cyclic fatigue performance. This practice builds on experience and existing standards in tensile testing advanced ceramics at ambient temperatures and addresses various suggested test specimen geometries, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates and frequencies, allowable bending, and procedures for data collection and reporting. This practice does not apply to axial cyclic fatigue tests of components or parts (that is, machine elements with nonuniform or multiaxial stress states).1.2 This practice applies primarily to advanced ceramics that macroscopically exhibit isotropic, homogeneous, continuous behavior. While this practice applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics, as well as certain discontinuous fibre-reinforced composite ceramics, may also meet these macroscopic behavior assumptions. Generally, continuous fibre-reinforced ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this practice to these materials is not recommended.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, reliability assessment, and design data generation.4.2 High-strength, monolithic advanced ceramic materials are generally characterized by small grain sizes (<50 μm) and bulk densities near the theoretical density. These materials are candidates for load-bearing structural applications requiring high degrees of wear and corrosion resistance and elevated-temperature strength. Although flexural test methods are commonly used to evaluate strength of advanced ceramics, the nonuniform stress distribution of the flexure specimen limits the volume of material subjected to the maximum applied stress at fracture. Uniaxially loaded tensile strength tests provide information on strength-limiting flaws from a greater volume of uniformly stressed material.4.3 Because of the probabilistic strength distributions of brittle materials such as advanced ceramics, a sufficient number of test specimens at each testing condition is required for statistical analysis and eventual design with guidelines for sufficient numbers provided in this test method. Size-scaling effects as discussed in Practice C1239 will affect the strength values. Therefore, strengths obtained using different recommended tensile test specimen geometries with different volumes or surface areas of material in the gage sections will be different due to these size differences. Resulting strength values can, in principle, be scaled to an effective volume or effective surface area of unity as discussed in Practice C1239.4.4 Tensile tests provide information on the strength and deformation of materials under uniaxial stresses. Uniform stress states are required to effectively evaluate any nonlinear stress-strain behavior which may develop as the result of testing mode, testing rate, processing or alloying effects, environmental influences, or elevated temperatures. These effects may be consequences of stress corrosion or sub-critical (slow) crack growth which can be minimized by testing at appropriately rapid rates as outlined in this test method.4.5 The results of tensile tests of specimens fabricated to standardized dimensions from a particular material or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments.4.6 For quality control purposes, results derived from standardized tensile test specimens can be considered to be indicative of the response of the material from which they were taken for particular primary processing conditions and post-processing heat treatments.4.7 The tensile strength of a ceramic material is dependent on both its inherent resistance to fracture and the presence of flaws. Analysis of fracture surfaces and fractography as described in Practice C1322 and MIL-HDBK-790, though beyond the scope of this test method, are recommended for all purposes, especially for design data.1.1 This test method covers the determination of tensile strength under uniaxial loading of monolithic advanced ceramics at elevated temperatures. This test method addresses, but is not restricted to, various suggested test specimen geometries as listed in the appendix. In addition, test specimen fabrication methods, testing modes (force, displacement, or strain control), testing rates (force rate, stress rate, displacement rate, or strain rate), allowable bending, and data collection and reporting procedures are addressed. Tensile strength as used in this test method refers to the tensile strength obtained under uniaxial loading.1.2 This test method applies primarily to advanced ceramics which macroscopically exhibit isotropic, homogeneous, continuous behavior. While this test method applies primarily to monolithic advanced ceramics, certain whisker- or particle-reinforced composite ceramics as well as certain discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Generally, continuous fiber ceramic composites (CFCCs) do not macroscopically exhibit isotropic, homogeneous, continuous behavior and application of this test method to these materials is not recommended.1.3 The values stated in SI units are to be regarded as the standard and are in accordance with IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to Section 7 for specific precautions.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

4.1 For many structural ceramic components in service, their use is often limited by lifetimes that are controlled by a process of SCG. This test method provides the empirical parameters for appraising the relative SCG susceptibility of ceramic materials under specified environments. Furthermore, this test method may establish the influences of processing variables and composition on SCG as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, and limited design data generation purposes. The conventional analysis of constant stress rate testing is based on a number of critical assumptions, the most important of which are listed in the next paragraphs.4.2 The flexural stress computation for the rectangular beam test specimens or the equibiaxial disk flexure test specimens is based on simple beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one-fiftieth of the beam thickness.4.3 The test specimen sizes and fixtures for rectangular beam test specimens should be in accordance with Test Method C1161, which provides a balance between practical configurations and resulting errors, as discussed in Refs (4, 5). Only four-point test configuration is allowed in this test method for rectangular beam specimens. Three-point test configurations are not permitted. The test specimen sizes and fixtures for disk test specimens tested in ring-on-ring flexure should be chosen in accordance with Test Method C1499. The test specimens for direct tension strength testing should be chosen in accordance with Test Method C1273.4.4 The SCG parameters (n and D) are determined by fitting the measured experimental data to a mathematical relationship between strength and applied stress rate, log σf = 1/(n+1) log σ˙ + log D. The basic underlying assumption on the derivation of this relationship is that SCG is governed by an empirical power-law crack velocity, v = A[KI/KIC]n (see Appendix X1).NOTE 3: There are various other forms of crack velocity laws which are usually more complex or less convenient mathematically, or both, but may be physically more realistic (6). It is generally accepted that actual data cannot reliably distinguish between the various formulations. Therefore, the mathematical analysis in this test method does not cover such alternative crack velocity formulations.4.5 The mathematical relationship between strength and stress rate was derived based on the assumption that the slow crack growth parameter is at least n ≥ 5 (1, 7, 8). Therefore, if a material exhibits a very high susceptibility to SCG, that is, n < 5, special care should be taken when interpreting the results.4.6 The mathematical analysis of test results in accordance with the method in 4.4 assumes that the material displays no rising R-curve behavior. It should be noted that the existence of such behavior cannot be determined from this test method.4.7 Slow crack growth behavior of ceramic materials exposed to stress-corrosive gases or liquid environments can vary as a function of mechanical, material, and electrochemical variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis or serve as a valid basis for characterizing materials and assessing structural behavior.4.8 The strength of advanced ceramics is probabilistic in nature. Therefore, SCG that is determined from the strengths of a ceramic material is also a probabilistic phenomenon. Hence, a proper range and number of applied stress rates in conjunction with an appropriate number of specimens at each applied stress rate are required for statistical reproducibility and design (2). Guidelines are provided in this test method.NOTE 4: For a given ceramic material/environment system, the SCG parameter n is constant regardless of specimen size although its reproducibility is dependent on the variables mentioned in 4.8. By contrast, the SCG parameter D depends significantly on strength and thus on specimen size (see Eq X1.6 in Appendix X1).4.9 The strength of a ceramic material for a given specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, and environmental effects. Analysis of a fracture surface, fractography, though beyond the scope of this test method, is highly recommended for all purposes, especially to verify the mechanism(s) associated with failure (refer to Practice C1322).4.10 The conventional analysis of constant stress rate testing is based on a critical assumption that stress is uniform throughout the test piece. This is most easily achieved in direct tension test specimens. Only test specimens that fracture in the inner gauge section in four-point testing should be used. Three-point flexure shall not be used. Breakages between the outer and inner fixture contact points should be discounted. The same requirement applies to biaxial disk strength testing. Only fractures which occur in the inner loading circle should be used. Furthermore, it is assumed that the fracture origins are near to the tensile surface and do not grow very large relative to the thickness of rectangular beam flexure or disk strength test specimens.4.11 The conventional analysis of constant stress rate testing is also based on a critical assumption that the same type flaw controls strength in all specimens at all loading rates. If the flaw distribution is multimodal, then the conventional analysis in this standard may produce erroneous slow crack growth parameter estimates.1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress rate rectangular beam flexural testing, ring-on-ring biaxial disk flexural testing, or direct tensile strength, in which strength is determined as a function of applied stress rate in a given environment at ambient temperature. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material.NOTE 1: This test method is frequently referred to as “dynamic fatigue” testing (1-3)2 in which the term “fatigue” is used interchangeably with the term “slow crack growth.” To avoid possible confusion with the “fatigue” phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823, this test method uses the term “constant stress rate testing” rather than “dynamic fatigue” testing.NOTE 2: In glass and ceramics technology, static tests of considerable duration are called “static fatigue” tests, a type of test designated as stress rupture (See Terminology E1823).1.2 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Interlaminar delamination growth can be a critical failure mode in laminated CMC structures. Knowledge of the resistance to interlaminar delamination growth of a laminated CMC is essential for material development and selection, and for CMC component design. (See (1-8)3 which give GIc values of 20 J/m2 to 800 J/m2 for different CMC and carbon-carbon composite systems at ambient temperatures.)5.2 Conducting this test produces multiple values of GIc which are traditionally plotted against the delamination length at which that value was measured (see Fig. 2). The specific data of value to the test requestor will depend on the end use that motivated testing.5.2.1 The first increment of growth, initiated from a pre-implanted insert or machined notch, is sometimes described as the non-precracked (NPC) toughness. NPC toughness may be of interest, as it can represent manufacturing or processing defects, such as foreign object debris in a laminate or an error during machining.5.2.2 The next increment of growth, initiated from the sharp crack tip assumed to be present after the first increment, is sometimes defined as the precracked (PC) toughness. PC toughness may be of interest, as it is more representative of the resistance to delamination growth from a naturally occurring or damage-induced delamination.5.2.3 The remaining increments of growth, collectively forming an R-curve, provide information on how GIc evolves as the delamination advances. In unidirectional tape laminates, the R-curve is often increasing due to bridging of nested fibers across the delamination plane, artificially increasing GIc. For 2-D woven laminates for which there is little interply nesting, the R-curve may be flat.5.2.4 The increments of growth in which the R-curve is flat, and GIc has reached a steady state value defined as GIR, may be of interest and may also useful in design and analysis.5.3 This test method for measurement of GIc of CMC materials can serve the following purposes:5.3.1 To establish quantitatively the effect of CMC material variables (fiber interface coatings, matrix structure and porosity, fiber architecture, processing and environmental variables, conditioning/exposure treatments, etc.) on GIc and the interlaminar crack growth and damage mechanisms of a particular CMC material;5.3.2 To determine if a CMC material shows R-curve behavior where GIc changes with crack extension or reaches a stable value at a given amount of delamination growth. Fig. 2 shows R-curve behavior for a SiC-SiC composite (1);5.3.3 To develop delamination failure criteria and design allowables for CMC damage tolerance, durability or reliability analyses, and life prediction;NOTE 3: Test data can only reliably be used for this purpose if there is confidence that the test is yielding a material property and not a structural, geometry-dependent, property.5.3.4 To compare quantitatively the relative values of GIc for different CMC materials with different constituents and material properties, reinforcement architectures, processing parameters, or environmental exposure conditions; and5.3.5 To compare quantitatively the values of GIc obtained from different batches of a specific CMC material, to perform lot acceptance quality control, to use as a material screening criterion, or to assess batch variability.1.1 This test method describes the experimental methods and procedures for the determination of the critical mode I interlaminar strain energy release rate of continuous fiber- reinforced ceramic matrix composite (CMC) materials in terms of GIc. This property is also sometimes described as the mode I fracture toughness or the mode I fracture resistance.1.2 This test method applies primarily to ceramic matrix composite materials with a 2-D laminate structure, consisting of lay-ups of continuous ceramic fibers, in unidirectional tape or 2-D woven fabric architectures, within a brittle ceramic matrix.1.3 This test method determines the elastic strain energy released per unit of new surface area created as a delamination grows at the interlaminar interface between two lamina or plies. The term delamination is used in this test method to specifically refer to this type of growth, while the term crack is a more general term that can also refer to matrix cracking, intralaminar delamination growth, or fiber fracture.1.4 This test method uses a double cantilever beam (DCB) specimen to determine the critical mode I interlaminar strain energy release rate (GIc). A DCB test method has been standardized for polymer matrix composites (PMCs) under Test Method D5528. This test method addresses a similar procedure, but with modifications to account for the different physical properties, reinforcement architectures, stress-strain response, and failure mechanisms of CMCs compared to PMCs.1.5 This test is written for ambient temperature and atmospheric test conditions, but the test method can also be used for elevated temperature or environmental exposure testing with the use of an appropriate environmental test chamber, measurement equipment for controlling and measuring the chamber temperature, humidity, and atmosphere, high temperature gripping fixtures, and modified equipment for measuring delamination growth.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in Section 8.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 This test method may be used for material development, characterization, design data generation, and quality control purposes.5.2 This test method is specifically appropriate for determining the modulus of advanced ceramics that are elastic, homogeneous, and isotropic (1).45.3 This test method addresses the room temperature determination of dynamic moduli of elasticity of slender bars (rectangular cross section) and rods (cylindrical). Flat plates and discs may also be measured similarly, but the required equations for determining the moduli are not addressed herein.5.4 This dynamic test method has several advantages and differences from static loading techniques and from resonant techniques requiring continuous excitation.5.4.1 The test method is nondestructive in nature and can be used for specimens prepared for other tests. The specimens are subjected to minute strains; hence, the moduli are measured at or near the origin of the stress-strain curve, with the minimum possibility of fracture.5.4.2 The impulse excitation test uses an impact tool and simple supports for the test specimen. There is no requirement for complex support systems that require elaborate setup or alignment.5.5 This technique can be used to measure resonant frequencies alone for the purposes of quality control and acceptance of test specimens of both regular and complex shapes. A range of acceptable resonant frequencies is determined for a specimen with a particular geometry and mass. Deviations in specimen dimensions or mass and internal flaws (cracks, delaminations, inhomogeneities, porosity, etc.) will change the resonant frequency for that specimen. Any specimen with a resonant frequency falling outside the prescribed frequency range is rejected. The actual modulus of each specimen need not be determined as long as the limits of the selected frequency range are known to include the resonant frequency that the specimen must possess if its geometry and mass and internal structure are within specified tolerances. The technique is particularly suitable for testing specimens with complex geometries (other than parallelepipeds, cylinders/rods, or discs) that would not be suitable for testing by other procedures. This is similar to the evaluation method described in Guide E2001.5.6 If a thermal treatment or an environmental exposure affects the elastic response of the test specimen, this test method may be suitable for the determination of specific effects of thermal history, environment exposure, etc. Specimen descriptions should include any specific thermal treatments or environmental exposures that the specimens have received.1.1 This test method covers determination of the dynamic elastic properties of advanced ceramics at ambient temperatures. Specimens of these materials possess specific mechanical resonant frequencies that are determined by the elastic modulus, mass, and geometry of the test specimen. The dynamic elastic properties of a material can therefore be computed if the geometry, mass, and mechanical resonant frequencies of a suitable (rectangular, cylindrical, or disc geometry) test specimen of that material can be measured. The resonant frequencies in flexure and torsion are measured by excitation of vibrations of the test specimen in a supported mode by a singular elastic strike with an impulse tool (Section 4 and Fig. 1, Fig. 3, and Fig. 4). Dynamic Young’s modulus is determined using the resonant frequency in the flexural mode of vibration. The dynamic shear modulus, or modulus of rigidity, is found using torsional resonant vibrations. Dynamic Young’s modulus and dynamic shear modulus are used to compute Poisson’s ratio.FIG. 1 Block Diagram of Typical Test Apparatus1.2 Although not specifically described herein, this test method can also be performed at cryogenic and high temperatures with suitable equipment modifications and appropriate modifications to the calculations to compensate for thermal expansion, in accordance with Subsections 9.2, 9.3, and 10.4 of Test Method C1198.1.3 There are material-specific ASTM standards that cover the determination of resonance frequencies and elastic properties of specific materials by sonic resonance or by impulse excitation of vibration. Test Methods C215, C623, C747, C848, C1198, E1875, and E1876 may differ from this test method in several areas (for example, sample size, dimensional tolerances, sample preparation, calculation details, etc.). The testing of those materials should be done in compliance with the appropriate material-specific standards. Where possible, the procedures, sample specifications, and calculations in this standard are consistent with the other test methods.1.4 This test method uses test specimens in bar, rod, and disc geometries. The rod and bar geometries are described in the main body. The disc geometry is addressed in Annex A1.1.5 A modification of this test method can be used for quality control and nondestructive evaluation, using changes in resonant frequency to detect variations in specimen geometry and mass and internal flaws in the specimen. (See 5.5.)1.6 The values stated in SI units are to be regarded as standard. The non-SI unit values given in parentheses are for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 For many structural ceramic components in service, their use is often limited by lifetimes that are controlled by a process of slow crack growth. This test method provides the empirical parameters for appraising the relative slow crack growth susceptibility of ceramic materials under specified environments at elevated temperatures. This test method is similar to Test Method C1368 with the exception that provisions for testing at elevated temperatures are given. Furthermore, this test method may establish the influences of processing variables and composition on slow crack growth as well as on strength behavior of newly developed or existing materials, thus allowing tailoring and optimizing material processing for further modification. In summary, this test method may be used for material development, quality control, characterization, and limited design data generation purposes.NOTE 3: Data generated by this test method do not necessarily correspond to crack velocities that may be encountered in service conditions. The use of data generated by this test method for design purposes may entail considerable extrapolation and loss of accuracy.4.2 In this test method, the flexural stress computation is based on simple beam theory, with the assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than one fiftieth (1/50) of the beam thickness.4.3 In this test method, the test specimen sizes and test fixtures were chosen in accordance with Test Method C1211, which provides a balance between practical configurations and resulting errors, as discussed in Refs (5, 6). Only the four-point test configuration is used in this test method.4.4 In this test method, the slow crack growth parameters (n and D) are determined based on the mathematical relationship between flexural strength and applied stress rate, log σf = [1/(n + 1)] log σ˙ + log D, together with the measured experimental data. The basic underlying assumption on the derivation of this relationship is that slow crack growth is governed by an empirical power-law crack velocity, v = A[KI /KIC]n (see Appendix X1).NOTE 4: There are various other forms of crack velocity laws which are usually more complex or less convenient mathematically, or both, but may be physically more realistic (7). The mathematical analysis in this test method does not cover such alternative crack velocity formulations.4.5 In this test method, the mathematical relationship between flexural strength and stress rate was derived based on the assumption that the slow crack growth parameter is at least n ≥ 5 (1, 8). Therefore, if a material exhibits a very high susceptibility to slow crack growth, that is, n < 5, special care should be taken when interpreting the results.4.6 The mathematical analysis of test results according to the method in 4.4 assumes that the material displays no rising R-curve behavior, that is, no increasing fracture resistance (or crack-extension resistance) with increasing crack length. It should be noted that the existence of such behavior cannot be determined from this test method. The analysis further assumes that the same flaw types control strength over the entire test range. That is, no new flaws are created, and the flaws that control the strength at the highest stress rate control the strength at the lowest stress rate.4.7 Slow crack growth behavior of ceramic materials can vary as a function of mechanical, material, thermal, and environmental variables. Therefore, it is essential that test results accurately reflect the effects of specific variables under study. Only then can data be compared from one investigation to another on a valid basis, or serve as a valid basis for characterizing materials and assessing structural behavior.4.8 The strength of advanced ceramics is probabilistic in nature. Therefore, slow crack growth that is determined from the flexural strengths of a ceramic material is also a probabilistic phenomenon. Hence, a proper range and number of test rates in conjunction with an appropriate number of specimens at each test rate are required for statistical reproducibility and design (2). Guidance is provided in this test method.NOTE 5: For a given ceramic material/environment system, the SCG parameter n is independent of specimen size, although its reproducibility is dependent on the variables previously mentioned. By contrast, the SCG parameter D depends significantly on strength, and thus on specimen size (see Eq X1.7).4.9 The elevated-temperature strength of a ceramic material for a given test specimen and test fixture configuration is dependent on its inherent resistance to fracture, the presence of flaws, test rate, and environmental effects. Analysis of a fracture surface, fractography, though beyond the scope of this test method, is highly recommended for all purposes, especially to verify the mechanism(s) associated with failure (refer to Practice C1322).1.1 This test method covers the determination of slow crack growth (SCG) parameters of advanced ceramics by using constant stress-rate flexural testing in which flexural strength is determined as a function of applied stress rate in a given environment at elevated temperatures. The strength degradation exhibited with decreasing applied stress rate in a specified environment is the basis of this test method which enables the evaluation of slow crack growth parameters of a material.NOTE 1: This test method is frequently referred to as “dynamic fatigue” testing (1-3)2 in which the term “fatigue” is used interchangeably with the term “slow crack growth.” To avoid possible confusion with the “fatigue” phenomenon of a material which occurs exclusively under cyclic loading, as defined in Terminology E1823, this test method uses the term “constant stress-rate testing” rather than “dynamic fatigue” testing.NOTE 2: In glass and ceramics technology, static tests of considerable duration are called “static fatigue” tests, a type of test designated as stress-rupture (Terminology E1823).1.2 This test method is intended primarily to be used for negligible creep of test specimens, with specific limits on creep imposed in this test method.1.3 This test method applies primarily to advanced ceramics that are macroscopically homogeneous and isotropic. This test method may also be applied to certain whisker- or particle-reinforced ceramics that exhibit macroscopically homogeneous behavior.1.4 This test method is intended for use with various test environments such as air, vacuum, inert, and any other gaseous environments.1.5 Values expressed in this standard test are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, quality control, characterization, and design data generation purposes. This test method is intended to be used with ceramics whose flexural strength is ∼50 MPa (∼7 ksi) or greater.4.2 The flexure stress is computed based on simple beam theory, with assumptions that the material is isotropic and homogeneous, the moduli of elasticity in tension and compression are identical, and the material is linearly elastic. The average grain size should be no greater than 1/50 of the beam thickness. The homogeneity and isotropy assumptions in the test method rule out the use of it for continuous fiber-reinforced composites for which Test Method C1341 is more appropriate.4.3 The flexural strength of a group of test specimens is influenced by several parameters associated with the test procedure. Such factors include the testing rate, test environment, specimen size, specimen preparation, and test fixtures. Specimen and fixture sizes were chosen to provide a balance between the practical configurations and resulting errors as discussed in Test Method C1161, and Refs (1-3).4 Specific fixture and specimen configurations were designated in order to permit the ready comparison of data without the need for Weibull size scaling.4.4 The flexural strength of a ceramic material is dependent on both its inherent resistance to fracture and the size and severity of flaws. Variations in these cause a natural scatter in test results for a sample of test specimens. Fractographic analysis of fracture surfaces, although beyond the scope of this test method, is highly recommended for all purposes, especially if the data will be used for design as discussed in Ref (4) and Practices C1322 and C1239.4.5 This method determines the flexural strength at elevated temperature and ambient environmental conditions at a nominal, moderately fast testing rate. The flexural strength under these conditions may or may not necessarily be the inert flexural strength. Flexure strength at elevated temperature may be strongly dependent on testing rate, a consequence of creep, stress corrosion, or slow crack growth. If the purpose of the test is to measure the inert flexural strength, then extra precautions are required and faster testing rates may be necessary.NOTE 6: Many ceramics are susceptible to either environmentally assisted slow crack growth or thermally activated slow crack growth. Oxide ceramics, glasses, glass ceramics, and ceramics containing boundary phase glass are particularly susceptible to slow crack growth. Time-dependent effects that are caused by environmental factors (for example, water as humidity in air) may be minimized through the use of inert testing atmosphere such as dry nitrogen gas or vacuum. Alternatively, testing rates faster than specified in this standard may be used if the goal is to measure the inert strength. Thermally activated slow crack growth may occur at elevated temperature even in inert atmospheres. Testing rates faster than specified in this standard should be used if the goal is to measure the inert flexural strength. On the other hand, many ceramics such as boron carbide, silicon carbide, aluminum nitride, and many silicon nitrides have no sensitivity to slow crack growth at room or moderately elevated temperatures and for such materials, the flexural strength measured under laboratory ambient conditions at the nominal testing rate is the inert flexural strength.4.6 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.4.7 The three-point test configuration exposes only a very small portion of the specimen to the maximum stress. Therefore, three-point flexural strengths are likely to be much greater than four-point flexural strengths. Three-point flexure has some advantages. It uses simpler test fixtures, it is easier to adapt to high temperature, and it is sometimes helpful in Weibull statistical studies. However, four-point flexure is preferred and recommended for most characterization purposes.1.1 This test method covers determination of the flexural strength of advanced ceramics at elevated temperatures.2 Four-point-1/4-point and three-point loadings with prescribed spans are the standard as shown in Fig. 1. Rectangular specimens of prescribed cross-section are used with specified features in prescribed specimen-fixture combinations. Test specimens may be 3 by 4 by 45 to 50 mm in size that are tested on 40-mm outer span four-point or three-point fixtures. Alternatively, test specimens and fixture spans half or twice these sizes may be used. The test method permits testing of machined or as-fired test specimens. Several options for machining preparation are included: application matched machining, customary procedures, or a specified standard procedure. This test method describes the apparatus, specimen requirements, test procedure, calculations, and reporting requirements. The test method is applicable to monolithic or particulate- or whisker-reinforced ceramics. It may also be used for glasses. It is not applicable to continuous fiber-reinforced ceramic composites.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.4.2 Continuous fiber-reinforced ceramic matrix composites generally are characterized by glass or fine grain-sized (<50 μm) ceramic matrices and ceramic fiber reinforcements. CFCCs are candidate materials for high-temperature structural applications requiring high degrees of corrosion and oxidation resistance, wear and erosion resistance, and inherent damage tolerance, that is, toughness. In addition, continuous fiber-reinforced glass (amorphous) matrix composites are candidate materials for similar but possibly less demanding applications. Although shear test methods are used to evaluate shear interlaminar strength (τZX, τZY) in advanced ceramics, there is significant difficulty in test specimen machining and testing. Improperly prepared notches can produce nonuniform stress distribution in the shear test specimens and can lead to ambiguity of interpretation of strength results. In addition, these shear test specimens also rarely produce a gage section that is in a state of pure shear. Uniaxially forced transthickness tensile strength tests measure the tensile interlaminar strengthavoid the complications listed above, and provide information on mechanical behavior and strength for a uniformly stressed material. The ultimate strength value measured is not a direct measure of the matrix strength, but a combination of the strength of the matrix and the level of bonding between the fiber, fiber/matrix interphase, and the matrix.4.3 CFCCs tested in a transthickness tensile test (TTT) may fail from a single dominant flaw or from a cumulative damage process; therefore, the volume of material subjected to a uniform tensile stress for a single uniaxially forced TTT may be a significant factor in determining the ultimate strength of CFCCs. The probabilistic nature of the strength distributions of the brittle matrices of CFCCs requires a sufficient number of test specimens at each testing condition for statistical analysis and design, with guidelines for test specimen size and sufficient numbers provided in this test method. Studies to determine the exact influence of test specimen volume on strength distributions for CFCCs have not been completed. It should be noted that strengths obtained using other recommended test specimens with different volumes and areas may vary due to these volume differences.4.4 The results of TTTs of test specimens fabricated to standardized dimensions from a particular material, or selected portions of a part, or both, may not totally represent the strength and deformation properties of the entire full-size end product or its in-service behavior in different environments.4.5 For quality control purposes, results derived from standardized TTT specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.4.6 The strength of CFCCs is dependent on their inherent resistance to fracture, the presence of flaws, damage accumulation processes, or a combination thereof. Analysis of fracture surfaces and fractography, though beyond the scope of this test method, is highly recommended.1.1 This test method covers the determination of transthickness tensile strengthunder monotonic uniaxial tensile loading of continuous fiber-reinforced ceramics (CFCC) at ambient temperature. This test method addresses, but is not restricted to, various suggested test specimen geometries, test fixtures, data collection, and reporting procedures. In general, round or square test specimens are tensile tested in the direction normal to the thickness by bonding appropriate hardware to the samples and performing the test. For a Cartesian coordinate system, the x-axis and the y-axis are in the plane of the test specimen. The transthickness direction is normal to the plane and is labeled the z-axis for this test method. For CFCCs, the plane of the test specimen normally contains the larger of the three dimensions and is parallel to the fiber layers for unidirectional, bidirectional, and woven composites. Note that transthickness tensile strength as used in this test method refers to the tensile strength obtained under monotonic uniaxial tensile loading, where “monotonic” refers to a continuous nonstop test rate with no reversals from test initiation to final fracture.1.2 This test method is intended primarily for use with all advanced ceramic matrix composites with continuous fiber reinforcement: unidirectional (1D), bidirectional (2D), woven, and tridirectional (3D). In addition, this test method also may be used with glass (amorphous) matrix composites with 1D, 2D, and 3D continuous fiber reinforcement. This test method does not directly address discontinuous fiber-reinforced, whisker-reinforced, or particulate-reinforced ceramics, although the test methods detailed here may be equally applicable to these composites. It should be noted that 3D architectures with a high volume fraction of fibers in the “z” direction may be difficult to test successfully.1.3 Values are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Additional recommendations are provided in 6.7 and Section 7.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 Advanced ceramics can be candidate materials for structural applications requiring high degrees of wear and corrosion resistance, often at elevated temperatures.5.2 Joints are produced to enhance the performance and applicability of materials. While the joints between similar materials are generally made for manufacturing complex parts and repairing components, those involving dissimilar materials usually are produced to exploit the unique properties of each constituent in the new component. Depending on the joining process, the joint region may be the weakest part of the component. Since under mixed-mode and shear loading the load transfer across the joint requires reasonable shear strength, it is important that the quality and integrity of joint under in-plane shear forces be quantified. Shear strength data are also needed to monitor the development of new and improved joining techniques.5.3 Shear tests provide information on the strength and deformation of materials under shear stresses.5.4 This test method may be used for material development, material comparison, quality assurance, characterization, and design data generation.5.5 For quality control purposes, results derived from standardized shear test specimens may be considered indicative of the response of the material from which they were taken for given primary processing conditions and post-processing heat treatments.1.1 This test method covers the determination of shear strength of joints in advanced ceramics at ambient temperature using asymmetrical four-point flexure. Test specimen geometries, test specimen fabrication methods, testing modes (that is, force or displacement control), testing rates (that is, force or displacement rate), data collection, and reporting procedures are addressed.1.2 This test method is used to measure shear strength of ceramic joints in test specimens extracted from larger joined pieces by machining. Test specimens fabricated in this way are not expected to warp due to the relaxation of residual stresses but are expected to be much straighter and more uniform dimensionally than butt-jointed test specimens prepared by joining two halves, which is not recommended. In addition, this test method is intended for joints, which have either low or intermediate strengths with respect to the substrate material to be joined. Joints with high strengths should not be tested by this test method because of the high probability of invalid tests resulting from fractures initiating at the reaction points rather than in the joint. Determination of the shear strength of joints using this test method is appropriate particularly for advanced ceramic matrix composite materials but also may be useful for monolithic advanced ceramic materials.1.3 Values expressed in this test method are in accordance with the International System of Units (SI) and IEEE/ASTM SI 10.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are noted in 8.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
53 条记录,每页 15 条,当前第 2 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页