微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

定价: 571 加购物车

在线阅读 收 藏

定价: 515 加购物车

在线阅读 收 藏

4.1 This test method is used to determine conformance with provisions of Specification C33 pertaining to the amount of lightweight material in fine and coarse aggregates. A heavy liquid with a specific gravity of 2.0 is used to separate particles which may be classified as coal or lignite. Heavier liquids are to be used to check the percentages of other lightweight particles such as chert and shale having a specific gravity less than 2.40.4.2 The test method is useful in identifying porous aggregate particles in research activities or in petrographic analyses.1.1 This test method covers the determination of the percentage of lightweight particles in aggregate by means of sink-float separation in a heavy liquid of suitable specific gravity.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Some values have only SI units because the inch-pound equivalents are not used in the practice.NOTE 1: Sieve size is identified by its standard designation in Specification E11. The alternative designation given in parentheses is for information only and does not represent a different standard sieve size.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For a specific hazard statement, see 6.1.4.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

3.1 In production of paints, smoothness of the paint film is of paramount importance. Agglomerates or coarse particles larger than 45 μm are difficult to disperse and may prevent obtaining a smooth film. These test methods are a valuable quality control test for grading raw materials.1.1 These test methods cover the determination of the amount of coarse particles in dry pigments.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 This practice is to be used to help assess the biocompatibility of materials used in medical devices. It is designed to test the effect of particles released from medical devices and biomaterials on macrophages or other cells.4.2 The appropriateness of the methods should be carefully considered by the user since not all materials or applications need to be tested by this practice.4.3 Abbreviations: 4.3.1 FCS (FBS)—Fetal Calf Serum (Fetal Bovine Serum)4.3.2 FGFs—Fibroblast Growth Factors4.3.3 HBSS—Hank’s Balanced Salt Solution4.3.4 HEPES—A buffering salt (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)4.3.5 IL17—Interleukin 174.3.6 IL18—Interleukin 184.3.7 IL1β—Interleukin 1 beta4.3.8 IL6—Interleukin 64.3.9 IL8—Interleukin 84.3.10 LAL—Limulus Amebocyte Lysate4.3.11 LPS—lipopolysaccharide (endotoxin)4.3.12 MCP1—Monocyte Chemotactic Protein-14.3.13 MMPs—Matrix Metalloproteinases4.3.14 NO—Nitric Oxide4.3.15 PBS—Phosphate Buffered Saline4.3.16 PGE2—Prostaglandin E24.3.17 RPMI 1640—Specific Growth Medium (Roswell Park Memorial Institute)4.3.18 TGFβ—Transforming growth factor beta4.3.19 TNFα–—Tumor Necrosis Factor alpha4.3.20 VEGF—Vascular Endothelial Growth Factor1.1 This practice covers the assessment of cellular responses to wear particles and degradation products from implanted materials that may lead to a cascade of biological responses resulting in damage to adjacent and remote tissues. In order to ascertain the role of particles in stimulating such responses, the nature of the responses, and the consequences of the responses, established protocols are needed. This is an emerging, rapidly developing area, and the information gained from standard protocols is necessary to interpret cellular responses to particles and to determine if these correlate with in vivo responses. Since there are many possible and established ways of determining responses, a single standard protocol is not stated. However, well described protocols are needed to compare results from different investigators using the same materials and to compare biological responses for evaluating (ranking) different materials. For laboratories without established protocols, recommendations are given and indicated with an asterisk (*).1.2 Since the purpose of the following test procedures is to predict the response in human tissues, the use of human (preferably macrophage lineage) cells is recommended. However, the use of non-macrophage cell lineage or the use of cells from non-human and non-primate sources may be acceptable. The source of the cells or the cell line used should be justified based on the cellular responses under test and/or tissue of interest. Non-human cells should not be used if there is evidence of possible cross-species difference for specific test results as the results of this in vitro test may not correspond to actual human response.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

7.1 Although a cleaning action is imparted to the test component, it is not the intent of this practice to serve as a cleaning procedure. Components are normally cleaner after each consecutive test; thus repeated tests may be used to establish process limits for a given component (Fig. 4). A specific set of test parameters must be supplied by the agency specifying cleanliness limits. Fig. 1, Fig. 2, and Fig. 3 may be used as a guide to establish the desired parameters of test fluid, vibration, extraction, and analysis.FIG. 4 Contamination per Test Run Versus Consecutive Test Run Number7.2 The curve in Fig. 4 shows the typical behavior of a component when tested for cleanliness several consecutive times. Stabilization generally occurs before the fifth successive run. The stabilized region starts where a horizontal line through the maximum stabilized value intersects the curve.7.3 The allowable cleanliness limit of a test component should be based on the cleanliness requirements of the system in which it will be used, and the assigned value should be greater than the maximum stabilized value. When defining the allowable cleanliness limits, an important consideration is that the accuracy of the results decreases as the allowable limit value approaches the stabilized value.1.1 These practices cover sampling procedures for use in determining the particle cleanliness of liquids and liquid samples from components. Three practices, A, B, and C, have been developed on the basis of component geometry in order to encompass the wide variety of configurations. These practices establish guidelines to be used in preparing detailed procedures for sampling specific components.NOTE 1: The term cleanliness used in these practices refers to solid particles in the liquid. It does not generally cover other foreign matter such as gases, liquids, and products of chemical degradation. Cleanliness with respect to particulate contamination does not necessarily give any indication of the other types of contamination.1.2 All components, regardless of application, may be tested provided (1) the fluid medium selected is completely compatible with the materials, packing and fluid used in the test component, and test apparatus, and (2) the fluid is handled in accordance with the manufacturer's recommendations and precautions. A liquid shall be used as the test fluid medium. These test fluids may be flushing, rinsing, packing, end use operating, or suitable substitutes for end use operating fluids. (Warning—Practices for sampling surface cleanliness by the vacuum cleaner technique (used on clean room garments and large storage tanks) sampling gaseous fluids and handling hazardous fluids such as oxidizers, acids, propellants, and so forth, are not within the scope of the practices presented; however, they may be included in addendums or separate practices at a later date.Substitute fluids are recommended in place of end item fluids for preassembly cleanliness determinations on components using hazardous end item fluids. After obtaining the sample, the substitute fluid must be totally removed from the test part with particular caution given to the possibility of trapped fluid. It is hazardous to use a substitute fluid for testing assembled parts where the fluid can be trapped in dead ends, behind seals, and so forth.)NOTE 2: The word fluid used in these practices shall be assumed to be a liquid, unless otherwise stated.1.3 The cleanliness of assemblies with or without moving parts may be determined at the time of test; however, movement of internal component parts during the test will create unknown quantities of contamination from wear. Practice B covers configurations requiring dynamic actuation to achieve a sample. The practice does not differentiate between built-in particles and wear particles.NOTE 3: Defining allowable cleanliness limits is not within the scope of these practices.1.4 The three practices included are as follows:  SectionsPractice A—Static Fluid Sampling (Method for extracting fluid from the test article for analysis. This applies to components that have a cavity from which fluid may be extracted)  5 – 13Practice B—Flowing Fluid Sampling (Method for flushing contaminants from the test article for analysis. This applies to components which fluid can pass (1) directly through, or (2) pass into and out of by cycling) 14 – 22Practice C—Rinse Fluid Sampling (Method for rinsing contaminants from the test article's surfaces. The rinse fluid is analyzed for contamination. This applies to components that do not have a fluid cavity or for other reasons are not adaptable to Practices A and B) 23 – 311.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The significance of the number of scratches as far as correlation with field performance is concerned has not been established. A particle which is abrasive to plastic will not necessarily be abrasive to steel or other bearing materials. Some correlation was obtained in that the contaminant used in Sample 3 (see 10.1.1) had a greater wear rate in a laboratory ball bearing abrasive wear test than the contaminant in Sample 2.NOTE 1: The number of scratches obtained cannot be used to draw fine differences between greases, but rather, to group them into two or three general classes. One such possible division could be:  1 ... . less than 10 scratches  2 ... . 10 to 40 scratches  3 ... . more than 40 scratches5.2 An advantage of this test method is that each test takes only a few minutes to run.5.3 This test method is used for quality control and specification purpose.1.1 This test method covers a procedure for the detection and estimation of deleterious particles in lubricating grease.1.2 This test method is applicable to all lubricating greases. It can also be used to test other semi-solid or viscous materials. Grease fillers, such as graphite and molybdenum disulfide, can be tested for abrasive contaminants by first mixing them into petrolatum or grease known to be free of deleterious particles.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard. Within the text, the SI units are shown in brackets.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 Coarse particles in printing inks reduce the efficiency of the dispersion process, requiring not only extra milling passes, but also frequent changes in pump filters. In printing processes, they may cause excessive wear to metal plates, piling or localized retention of ink on blankets and plates, and water balance problems. Coarse particles also reduce color strength and the gloss of printed matter.4.2 This test method is suitable for quality control. The precision may be improved by the use of a specimen size larger than that prescribed.4.3 Test results are sensitive to the type of washout solvent used. Strong solvents are to be avoided because they may dissolve large particles of resin in the ink vehicle.1.1 This test method covers the determination of the weight concentration of coarse particles in printing ink dispersions by sieve retention.1.2 This test method is applicable to printing inks, flushed pigments, and other pigment dispersions that contain particles larger than 45 μm. With proper choice of solvent, it is applicable both to paste and liquid inks.NOTE 1: This test method is similar in principle to Test Methods D185. For particles under 25 μm, see Test Method D1316.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 This test method is of primary significance in determining the acceptability of aggregate with respect to the requirements of Specification C33/C33M.1.1 This test method covers the approximate determination of clay lumps and friable particles in aggregates.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.NOTE 1: Sieve sizes openings are identified by their Specification E11 designation with their alternative Specification E11 designation given in parentheses for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

定价: 571 加购物车

在线阅读 收 藏

定价: 515 加购物车

在线阅读 收 藏

5.1 This guide is intended for use by entities involved in the handling of UNP in occupational settings. This guide covers handling principles and techniques that may be applied, as appropriate, to the variety of UNP materials and handling settings. These settings include research and development activities, material manufacturing, and material use and processing. This guide may also be used by entities that receive materials or articles containing or comprising nanoscale particles fixed upon or within a matrix (that is, bound nanoscale particles), but whose own processes or use may reasonably be expected to cause such particles to become unbound.1.1 This guide describes actions that could be taken by the user to minimize human exposures to unbound, engineered nanoscale particles (UNP) in research, manufacturing, laboratory and other occupational settings where UNP may reasonably be expected to be present. It is intended to provide guidance for controlling such exposures as a cautionary measure where neither relevant exposure standards nor definitive hazard and exposure information exist.1.2 General Guidance—This guide is applicable to occupational settings where UNP may reasonably be expected to be present. Operations across those settings will vary widely in the particular aspects relevant to nanoscale particle exposure control. UNP represent a vast variety of physical and chemical characteristics (for example, morphology, mass, dimension, chemical composition, settling velocities, surface area, surface chemistry) and circumstances of use. Given the range of physical and chemical characteristics presented by the various UNP, the diversity of occupational settings and the uneven empirical knowledge of and experience with handling UNP materials, the purpose of this guide is to offer general guidance on exposure minimization approaches for UNP based upon a consensus of viewpoints, but not to establish a standard practice nor to recommend a definite course of action to follow in all cases.1.2.1 Accordingly, not all aspects of this guide may be relevant or applicable to all circumstances of UNP handling. The user should apply reasonable judgment in applying this guide including consideration of the characteristics of the particular UNP involved, the user’s engineering and other experience with the material, and the particular occupational settings where the user may apply this guide. Users are encouraged to obtain the services of qualified professionals in applying this guide.1.2.2 Applicable Where Relevant Exposure Standards Do Not Exist—This guide assumes that the user is aware of and in compliance with any authoritative occupational exposure standard applicable to the bulk form of the UNP. This guide may be appropriate where such exposure standards do not exist, or where such standards exist, but were not developed with consideration of the nanoscale form of the material.1.3 Applicable Where Robust Risk Information Does Not Exist—This guide assumes the absence of scientifically sound risk assessment information relevant to the particular UNP involved. Where sound risk assessment information exists, or comes to exist, any exposure control measures should be designed based on that information, and not premised on this guide. Such measures may be more or less stringent than those suggested by this guide.1.4 Materials Within —This guide pertains to unbound engineered nanoscale particles or their respirable agglomerates or aggregates thereof. Relevant nanoscale particle types include, for example, intentionally produced fullerenes, nanotubes, nanowires, nanoropes, nanoribbons, quantum dots, nanoscale metal oxides, and other engineered nanoscale particles. Respirable particles are those having an aerodynamic equivalent diameter (AED) less than or equal to 10 µm (10 000 nm) or those particles small enough to be collected with a respirable sampler (1-3).2 The AED describes the behavior of an airborne particle and is dependent upon the particle density, shape, and size—for instance, a particle with a spherical shape, smooth surface, density of 1.0 g/cc and a physical diameter of 4 µm would have an AED of 4 µm, whereas a particle with a spherical shape, smooth surface, density of 11.35 g/cc and a physical diameter of 4 µm would have an AED of 14 µm and would therefore be of a nonrespirable size. Respirable fibers are those having physical diameters less than or equal to 3 µm (3000 nm) or those fibers small enough to be collected with a thoracic sampler (4, 5).1.5 Materials Beyond : 1.5.1 UNP may be present in various forms, such as powders or suspensions, or as agglomerates and aggregates of primary particles, or as particles dispersed in a matrix. This guide does not pertain to UNP incapable, as a practical matter, from becoming airborne or be expected to generate or release UNP in occupational settings under the particular circumstances of use (for example, UNPs dispersed or otherwise fixed within a solid, strongly bonded to a substrate or contained within a liquid matrix such as aggregated primary crystals of pigments in paints). This guide does not pertain to aggregates or agglomerates of UNP that are not of a respirable size.1.5.2 This guide does not pertain to materials that present nanoscale surface features, but do not contain UNPs (for example, nanoscale lithography products, nanoelectronic structures or materials comprised of nanoscale layers).1.5.3 This guide does not pertain to UNPs which exist in nature which may be present in normal ambient atmospheres or are unintentionally produced by human activities, such as by combustion processes. Nor does it pertain to materials that have established exposure control programs (for example, safe handling protocols for nanoscale biological agents) or published exposure limits such as occupational exposure limits for welding fumes. See Appendix X1.1.6 Handling Considerations Beyond —The use of this guide is limited to the scope set forth in this section. This guide generally does not address actions related to potential environmental exposures, nor to exposures potentially arising at disposal or other end-uses.1.7 Not a Standard of Care—This guide does not necessarily represent the standard of care by which the adequacy of a set of exposure control measures should be judged; nor should this document be used without consideration of the particular materials and occupational circumstances to which it may be applied. The word “standard” in the title means only that the document has been approved through the ASTM consensus process.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843 加购物车

在线阅读 收 藏
130 条记录,每页 15 条,当前第 2 / 9 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页