3.1 In this guide, the planning, conduct, and completion of the independent verification, and other related details are addressed.3.2 The ITPV is intended to assist manufacturers, users, and regulating authorities in ensuring the accuracy of a reference material with a high level of confidence.1.1 This guide covers the significance and use, planning, conduct and completion of an independent third-party verification of reference materials.1.2 In this guide, independent third-party verification (ITPV) is defined as the evaluation of the conceptual and technical soundness a design or outcome being reviewed by one or more independent third party (ITPV) qualified by their education, training, and experience in the same discipline, or closely related field of science, to judge the worthiness of the design or assess the design’s likelihood of achieving the intended objectives and anticipated outcomes.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 This test method is used to determine the flexural strength of specimens prepared and cured in accordance with Test Methods C42/C42M or Practices C31/C31M or C192/C192M. Results are calculated and reported as the modulus of rupture. For the same specimen size, the strength determined will vary if there are differences in specimen preparation, curing procedure, moisture condition at time of testing, and whether the beam was molded or sawed to size.4.2 The measured modulus of rupture generally increases as the specimen size decreases.3,4,54.3 The results of this test method may be used to determine compliance with specifications or as a basis for mixture proportioning, evaluating uniformity of mixing, and checking placement operations by using sawed beams. It is used primarily in testing concrete for the construction of slabs and pavements.4.4 For identical test specimens, the modulus of rupture obtained by this test method will, on average, be lower than that obtained by Test Method C293/C293M.1.1 This test method covers the determination of the flexural strength of concrete by the use of a simple beam with third-point loading.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The first-peak strength characterizes the flexural behavior of the fiber-reinforced concrete up to the onset of cracking, while residual strengths at specified deflections characterize the residual capacity after cracking. Specimen toughness is a measure of the energy absorption capacity of the test specimen. The appropriateness of each parameter depends on the nature of the proposed application and the level of acceptable cracking and deflection serviceability. Fiber-reinforced concrete is influenced in different ways by the amount and type of fibers in the concrete. In some cases, fibers may increase the residual load and toughness capacity at specified deflections while producing a first-peak strength equal to or only slightly greater than the flexural strength of the concrete without fibers. In other cases, fibers may significantly increase the first-peak and peak strengths while affecting a relatively small increase in residual load capacity and specimen toughness at specified deflections.5.2 The first-peak strength, peak strength, and residual strengths determined by this test method reflect the behavior of fiber-reinforced concrete under static flexural loading. The absolute values of energy absorption obtained in this test are of little direct relevance to the performance of fiber-reinforced concrete structures since they depend directly on the size and shape of the specimen and the loading arrangement.5.3 The results of this test method may be used for comparing the performance of various fiber-reinforced concrete mixtures or in research and development work. They may also be used to monitor concrete quality, to verify compliance with construction specifications, obtain flexural strength data on fiber-reinforced concrete members subject to pure bending, or to evaluate the quality of concrete in service.5.4 The results of this standard test method are dependent on the size of the specimen.NOTE 5: The results obtained using one size molded specimen may not correspond to the performance of larger or smaller molded specimens, concrete in large structural units, or specimens sawn from such units. This difference may occur because the degree of preferential fiber alignment becomes more pronounced in molded specimens containing fibers that are relatively long compared with the cross-sectional dimensions of the mold. Moreover, structural members of significantly different thickness experience different maximum crack widths for a given mid-span deflection with the result that fibers undergo different degrees of pull-out and extension.1.1 This test method evaluates the flexural performance of fiber-reinforced concrete using parameters derived from the load-deflection curve obtained by testing a simply supported beam under third-point loading using a closed-loop, servo-controlled testing system.1.2 This test method provides for the determination of first-peak and peak loads and the corresponding stresses calculated by inserting them in the formula for modulus of rupture given in Eq 1. It also requires determination of residual loads at specified deflections, the corresponding residual strengths calculated by inserting them in the formula for modulus of rupture given in Eq 1 (see Note 1). It provides for determination of specimen toughness based on the area under the load-deflection curve up to a prescribed deflection (see Note 2) and the corresponding equivalent flexural strength ratio.NOTE 1: Residual strength is not a true stress but an engineering stress computed using simple engineering bending theory for linear elastic materials and gross (uncracked) section properties.NOTE 2: Specimen toughness expressed in terms of the area under the load-deflection curve is an indication of the energy absorption capability of the particular test specimen, and its magnitude depends directly on the geometry of the test specimen and the loading configuration.1.3 This test method utilizes two preferred specimen sizes of 100 mm by 100 mm by 350 mm [4 in. by 4 in. by 14 in.] tested on a 300 mm [12 in.] span, or 150 mm by 150 mm by 500 mm [6 in. by 6 in. by 20 in.] tested on a 450 mm [18 in.] span. A specimen size different from the two preferred specimen sizes is permissible.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method is used to determine the flexural strength of soil-cement. Flexural strength is significant in pavement design and can be used to determine the thickness of pavement layers.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the determination of the flexural strength of soil-cement by the use of a simple beam with third-point loading.NOTE 1: For methods of molding soil-cement specimens, see Practice D1632.1.2 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined. The SI units are presented in brackets.1.2.1 The gravitational system of inch-pound units is used when dealing with inchpound units. In this system, the pound (lbf) represents a unit of force (weight), while the unit for mass is slugs. The rationalized slug unit is not given, unless dynamic (F = ma) calculations are involved.1.3 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.3.1 The procedures used to specify how data are collected/recorded or calculated in the standard are regarded as industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 Acoustical performance is dependent on many factors (see Guide E1374 for a discussion on general office acoustical considerations). One of these factors is the masking sound. The masking spectrum shape and level must conform within specified tolerances throughout the treated area. The measurement and recording of these parameters are addressed in this test method.5.2 The results from this test method are used to determine if the masking sound meets a particular specification.1.1 This test method specifies the procedure used to measure the masking sound in terms of A-weighted and one-third-octave-band sound pressure levels.1.2 The results of this test method can be used to determine if and where the masking sound meets (or does not meet) a particular specification.1.3 This test method does not evaluate the overall acoustical environment. It is intended only to measure and report the masking sound levels.1.4 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
3.1 Flexural properties determined by this test method are useful for quality control of glass-fiber reinforced concrete products, ascertaining compliance with the governing specifications, research and development, and generating data for use in product design.1.1 This test method covers determination of the flexural ultimate strength in bending and the yield strength of glass-fiber reinforced concrete sections by the use of a simple beam of 1.0 in. (25.4 mm) or less in depth using third-point loading.1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车