5.1 This test method is used to evaluate automotive manual transmission fluids for thermal instability, which results in deterioration of synchronizer performance.5.2 This test method may also be utilized in other specifications and classifications of transmission and gear lubricants such as the following:5.2.1 (final API designation of PG-1),5.2.2 Military Specification MIL-L-2105,5.2.3 SAE Information Report J308 Axle and Manual Transmission Lubricants, and5.2.4 Mack Truck GO-H Gear Lubricant Specification.1.1 This test method covers the thermal stability of fluids for use in heavy duty manual transmissions when operated at high temperatures.1.2 The lubricant performance is measured by the number of shifting cycles that can be performed without failure of synchronization when the transmission is operated while continuously cycling between high and low range.1.3 Correlation of test results with truck transmission service has not been established. However, the procedure has been shown to appropriately separate two transmission lubricants, which have shown satisfactory and unsatisfactory field performance in the trucks of one manufacturer.1.4 Changes in this test method may be necessary due to refinements in the procedure, obsolescence of parts, or reagents, and so forth. These changes will be incorporated by Information Letters issued by the ASTM Test Monitoring Center (TMC). The test method will be revised to show the content of all the letters, as issued.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5.1 Exception—When materials, products, or equipment are available only in inch-pound units, SI units are omitted.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This test method is arranged as follows: Section 1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6 Test Transmission 6.2 Transmission Mounts 6.3 Oil-Circulating System 6.4 Oil Return Hole 6.5 Air Pressure Controls 6.6 Drive System 6.7 Instrumentation 6.8 Thermocouple Placement 6.9Reagents and Materials 7Safety 8Preparation of Apparatus 9 Cleaning of Parts 9.1 Assembly 9.2Calibration 10 Transmission and Test Stand Calibration 10.1 Reference Oils 10.2 Reference Oil Test Frequency 10.3 Instrumentation Calibration 10.4 Shift Time Calibration 10.5Operating Procedure 11 System Flush and Charge 11.1 Test Operation 11.2 Shut-Down Procedure 11.3 Transmission Disassembly 11.4Determination of Test Results 12 Failure Criteria 12.1 Shifter Fork Wear 12.2 Test Validity Determination 12.3Report 13Precision and Bias 14Keywords 15Test Validity Calculations and Limits Annex A5HTCT Test Report Forms and Data Dictionary Annex A6Manual Transmission Cyclic Durability Test Parts Inspection and Wear Measurements Annex A71.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Degradation of gear oils by oxidation or thermal breakdown, or both, can result in sludge buildup and render the oil unsuitable for further use as a lubricant.5.2 This is the only test method that employs glassware to measure the amount of sludge produced during oxidation and thermal degradation. This test method is a modification of Test Method D2893 which measures the viscosity increase and precipitation number of the oil stressed at 95 °C, but does not measure the amount of sludge formed.5.3 This test method can be used to evaluate the oxidation/thermal stability of gear oils. However, the test results may not correlate with the performance of gear oils in field service.1.1 This test method covers the determination of the oxidation characteristics of extreme pressure and non-extreme pressure gear oils and includes the quantitative determination of total sludge, viscosity change, and oil loss.NOTE 1: While the round-robin tests used ISO VG 220 extreme pressure gear oils for developing precision data, the test method can be extended to other viscosity grades and to non-extreme pressure gear oils. Refer to Classification D2422 for viscosity grades.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Under the severe conditions of this test method, the specimens undergo degradation at a rate that is dependent upon the thermal endurance of the polypropylene material under examination.5.2 The thermal level of this test method is considered sufficiently severe to cause failure of commercial grades of heat-stable polypropylene within a reasonable period of time. If desired, lower temperatures can be applied to estimate the performance of polypropylene materials with lower heat stability.5.3 The technique of specimen rotation described in this test method provides an estimate of the life-temperature relationship of polypropylene. If this test method is conducted at different temperatures on the same material, a more reliable estimate of the life-temperature relationship of polypropylene is determined. This test method can be conducted at several temperatures and the data interpreted through use of the Arrhenius relation, by plotting the logarithms of times to failure against the reciprocals of the temperatures in kelvins (K). Temperatures in the range from 100 to 150°C, with intervals of 10°C, are suggested for this purpose.5.4 The stability as determined under the prescribed test method is not directly related to the suitability of the compound for a use where different conditions prevail.5.5 The specimen rotation technique of thermal aging increases the probability that all specimens will be exposed similarly and that the effect of temperature gradients in an oven will be minimized.1.1 This test method provides a means for estimating the resistance of polypropylene, in molded form, to accelerated aging by heat in the presence of air using a forced draft oven.1.2 The stability determined by this test method is not directly related to the suitability of the material for use when different environmental conditions prevail and shall not be used to predict performance.NOTE 1: The specified thermal levels in this test method are considered sufficiently severe to cause failure of commercial grades of heat-stable polypropylene within a reasonable period of time. If desired, lower temperatures can be applied to estimate the performance of polypropylene with lower heat stabilities.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: This test method and ISO 4577–1983 are technically similar but different in preparation of test specimens, thickness of test specimen, measurement of the number of air flow changes in the ovens, and the number of air changes per hour required.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method is intended to induce color changes in sealants, as well as their constituent pigments, associated with end-use conditions, including the effects of sunlight, moisture, and heat. The exposures used in this test method are not intended to simulate the color change of a sealant caused by localized weathering phenomena, such as atmospheric pollution, biological attack, or saltwater exposure.5.2 When conducting exposures in devices that use laboratory light sources, it is important to consider how well the artificial test conditions will reproduce property changes and failure modes associated with end-use environments for the sealant being tested. Information on the use and interpretation of data from accelerated exposure tests is provided in Practice G151.5.3 When this test method is used as part of a specification, exact procedure, test conditions, test duration and evaluation technique must be specified. Results obtained between the two procedures may vary, because the spectral power distribution of the light sources (fluorescent UV and xenon arc) differ. Sealants should not be compared to each other based on the results obtained in different types of apparatus.5.4 These devices are capable of matching ultraviolet solar radiation reasonably well. However, for sealants sensitive to long wavelength UV and visible solar radiation, the absence of this radiation in the fluorescent UV apparatus can distort color stability ranking when compared to exterior environment exposure.NOTE 1: Refer to Practice G151 for full cautionary guidance regarding laboratory weathering of non-metallic materials.1.1 This test method describes laboratory accelerated weathering procedures using either fluorescent ultraviolet or xenon arc test devices for determining the color stability of building construction sealants.1.2 Color stability rankings provided by these two procedures may not agree.1.3 The values stated in SI units are to be regarded as the standard. Values given in parentheses are for information only.1.4 There is no equivalent ISO standard for this test method.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 The final appearance of an installed floor depends upon several factors. These include but are not limited to size and squareness in the case of tiles/planks, the quality of joint cut, the quality and preparation of the subfloor and the skill of the installer. Long term appearance of the installed floor is also dependent on but not limited to the ability of the tile/plank to resist shrinkage due to internal stress relief. This test method is used to measure the ability of the floor to retain its original dimensions following exposure to heat, simulating a long service life at reasonable and expected temperatures.1.1 This test method covers the determination of the change in linear dimensions of resilient floor tile/plank products after exposure to heat and reconditioning to ambient temperature.1.2 This test method allows one to also measure curling that can occur after a specimen has been exposed to heat and reconditioned back to ambient temperature.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method evaluates the percent viscosity loss for polymer-containing fluids resulting from polymer degradation in the high shear nozzle device. Thermal or oxidative effects are minimized.5.2 This test method is used for quality control purposes by manufacturers of polymeric lubricant additives and their customers.5.3 This test method is not intended to predict viscosity loss in field service in different field equipment under widely varying operating conditions, which may cause lubricant viscosity to change due to thermal and oxidative changes as well as by the mechanical shearing of polymer. However, when the field service conditions, primarily or exclusively, result in the degradation of polymer by mechanical shearing, there may be a correlation between the results from this test method and results from the field.1.1 This test method covers the evaluation of the shear stability of polymer-containing fluids. The test method measures the percent viscosity loss at 100 °C of polymer-containing fluids when evaluated by a diesel injector apparatus procedure that uses European diesel injector test equipment. The viscosity loss reflects polymer degradation due to shear at the nozzle.NOTE 1: Test Method D2603 has been used for similar evaluation of shear stability; limitations are as indicated in the significance statement. No detailed attempt has been undertaken to correlate the results of this test method with those of the sonic shear test method.NOTE 2: This test method uses test apparatus as defined in CEC L-14-A-93. This test method differs from CEC-L-14-A-93 in the period of time required for calibration.NOTE 3: Test Method D5275 also shears oils in a diesel injector apparatus but may give different results.NOTE 4: This test method has different calibration and operational requirements than withdrawn Test Method D3945.NOTE 5: Test Method D7109 is a similar procedure that measures shear stability at both 30 and 90 injection cycles. This test method uses 30 injection cycles only.1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Non-SI units are provided in parentheses.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 702元 加购物车