微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The final appearance of an installed floor depends upon several factors. These include but are not limited to size and squareness in the case of tiles/planks, the quality of joint cut, the quality and preparation of the subfloor and the skill of the installer. Long term appearance of the installed floor is also dependent on but not limited to the ability of the tile/plank to resist shrinkage due to internal stress relief. This test method is used to measure the ability of the floor to retain its original dimensions following exposure to heat, simulating a long service life at reasonable and expected temperatures.1.1 This test method covers the determination of the change in linear dimensions of resilient floor tile/plank products after exposure to heat and reconditioning to ambient temperature.1.2 This test method allows one to also measure curling that can occur after a specimen has been exposed to heat and reconditioned back to ambient temperature.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method evaluates the percent viscosity loss for polymer-containing fluids resulting from polymer degradation in the high shear nozzle device. Thermal or oxidative effects are minimized.5.2 This test method is used for quality control purposes by manufacturers of polymeric lubricant additives and their customers.5.3 This test method is not intended to predict viscosity loss in field service in different field equipment under widely varying operating conditions, which may cause lubricant viscosity to change due to thermal and oxidative changes as well as by the mechanical shearing of polymer. However, when the field service conditions, primarily or exclusively, result in the degradation of polymer by mechanical shearing, there may be a correlation between the results from this test method and results from the field.1.1 This test method covers the evaluation of the shear stability of polymer-containing fluids. The test method measures the percent viscosity loss at 100 °C of polymer-containing fluids when evaluated by a diesel injector apparatus procedure that uses European diesel injector test equipment. The viscosity loss reflects polymer degradation due to shear at the nozzle.NOTE 1: Test Method D2603 has been used for similar evaluation of shear stability; limitations are as indicated in the significance statement. No detailed attempt has been undertaken to correlate the results of this test method with those of the sonic shear test method.NOTE 2: This test method uses test apparatus as defined in CEC L-14-A-93. This test method differs from CEC-L-14-A-93 in the period of time required for calibration.NOTE 3: Test Method D5275 also shears oils in a diesel injector apparatus but may give different results.NOTE 4: This test method has different calibration and operational requirements than withdrawn Test Method D3945.NOTE 5: Test Method D7109 is a similar procedure that measures shear stability at both 30 and 90 injection cycles. This test method uses 30 injection cycles only.1.2 The values stated in SI units are to be regarded as the standard.1.2.1 Exception—Non-SI units are provided in parentheses.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702 加购物车

在线阅读 收 藏

5.1 This test method is used to evaluate oxidation stability of lubricating base oils with additives in the presence of chemistries similar to those found in gasoline engine service. Test results on some ASTM reference oils have been found to correlate with sequence IIID engine test results in hours for a 375 % viscosity increase.5 The test does not constitute a substitute for engine testing, which measures wear, oxidation stability, volatility, and deposit control characteristics of lubricants. Properly interpreted, the test may provide input on the oxidation stability of lubricants under simulated engine chemistry.5.2 This test method is intended to be used as a bench screening test and quality control tool for lubricating base oil manufacturing, especially for re-refined lubricating base oils. This test method is useful for quality control of oxidation stability of re-refined oils from batch to batch.5.3 This test method is useful for screening formulated oils prior to engine tests. Within similar additive chemistry and base oil types, the ranking of oils in this test appears to be predictive of ranking in engine tests. When oils having completely different additive chemistry or base oil type are compared, oxidation stability results may not reflect the actual engine test result.5.4 Other oxidation stability test methods have demonstrated that soluble metal catalyst supplies are very inconsistent and they have significant effects on the test results. Thus, for test comparisons, the same source and same batch of metal naphthenates shall be used.NOTE 2: It is also recommended as a good research practice not to use different batches of the fuel component in test comparisons.1.1 This test method evaluates the oxidation stability of engine oils for gasoline automotive engines. This test, run at 160 °C, utilizes a high pressure reactor pressurized with oxygen along with a metal catalyst package, a fuel catalyst, and water in a partial simulation of the conditions to which an oil may be subjected in a gasoline combustion engine. This test method can be used for engine oils with viscosity in the range from 4 mm2/s (cSt) to 21 mm2/s (cSt) at 100 °C, including re-refined oils.1.2 This test method is not a substitute for the engine testing of an engine oil in established engine tests, such as Sequence IIID.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3.1 Exception—Pressure units are provided in psig, and dimensions are provided in inches in Annex A1, because these are the industry accepted standard and the apparatus is built according to the figures shown.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 7 and 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method measures the tendency of automotive manual transmission and final drive lubricants to deteriorate under high-temperature conditions, resulting in thick oil, sludge, carbon and varnish deposits, and the formation of corrosive products. This deterioration can lead to serious equipment performance problems, including, in particular, seal failures due to deposit formation at the shaft-seal interface. This test method is used to screen lubricants for problematic additives and base oils with regard to these tendencies.5.2 This test method is used or referred to in the following documents:5.2.1 American Petroleum Institute (API) Publication 1560-Lubricant Service Designations for Automotive Manual Transmissions, Manual Transaxles, and Axles,75.2.2 STP-512A–Laboratory Performance Tests for Automotive Gear Lubricants Intended for API GL-5 Service,85.2.3 SAE J308-Information Report on Axle and Manual Transmission Lubricants,9 and5.2.4 U.S. Military Specification MIL-L-2105D.1.1 This test method is commonly referred to as the L-60-1 test.2 It covers the oil-thickening, insolubles-formation, and deposit-formation characteristics of automotive manual transmission and final drive axle lubricating oils when subjected to high-temperature oxidizing conditions.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.2.1 Exceptions—The values stated in SI units for catalyst mass loss, oil mass and volume, alternator output, and air flow are to be regarded as standard.1.2.2 SI units are provided for all parameters except where there is no direct equivalent such as the units for screw threads, or where there is a sole source supply equipment specification.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning information is given in Sections 7 and 8 and Annex A7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The induction period may be used as an indication of the oxidation and storage stability of spark ignition fuel.5.2 Compared to some other oxidation and storage stability test methods, this test method uses a small sample and gives a result in a short time period.1.1 This laboratory test method covers the quantitative determination of the stability of spark ignition fuel, including those containing alcohols or other oxygenates, under accelerated oxidation conditions, by an automatic instrument (Warning—This test method is not intended for determining the stability of gasoline components, particularly those with a high percentage of low boiling unsaturated compounds, as these can cause explosive conditions with the apparatus.2)1.2 This test method measures the induction period, under specified conditions, which can be used as an indication of the oxidation and storage stability of spark ignition fuel.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The induction period may be used as an indication of the oxidation and storage stability of middle distillate fuel.5.2 Compared to some other oxidation and storage stability test methods, this method uses a small sample and gives a result in a short time period.1.1 This laboratory test method covers a quantitative determination of the stability of middle distillate fuels such as diesel fuels and heating oils, with up to 100 % biodiesel, under accelerated oxidation conditions, by an automatic instrument.NOTE 1: This test method is technically equivalent to test method EN 160911.2 This test method is designed for products complying with Specification D975 on Diesel Fuel, Grades No. 1D and 2D; Specification D396 on Burner Fuel, Grades No. 1 and No. 2; Specification D6751 on Biodiesel, B100, and Specification D7467 on Diesel Fuel Oil, B6 to B20.1.3 This test method measures the induction period, under specified conditions, which can be used as an indication of the oxidation and storage stability of middle distillate fuels.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method measures the net change in pressure resulting from consumption of oxygen by oxidation and gain in pressure due to formation of volatile oxidation by-products. This test method may be used for quality control to indicate batch-to-batch uniformity. It predicts neither the stability of greases stored in containers for long periods, nor the stability of films of greases on bearings and motor parts.5.2 Induction period as determined under the conditions of this test method can be used as an indication of oxidation stability. This test method can be used for research and development, quality control, and specification purposes. However, no correlation has been determined between the results of this test method and service performance.1.1 This test method covers the quantitative determination of the oxidation stability of lubricating greases with a dropping point above the test temperature.1.2 This test method determines the resistance of lubricating greases to oxidation when stored statically in an oxygen atmosphere in a sealed system at an elevated temperature under conditions of test.1.3 The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 This test method determines the procedure to be used to ensure the long term storage stability of aircraft cleaning and maintenance products, in order to ensure their ability to meet the shelf-life requirements called up in specifications or contract documents. The subsequent testing requirements are detailed in the specification or contract.1.1 This test method covers the determination of the stability in storage, of liquid, water-base chemical cleaning compounds, used to clean the exterior surfaces of aircraft.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏
400 条记录,每页 15 条,当前第 12 / 27 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页