4.1 The results obtained from this method can be used to determine the unit weight of compacted asphalt mixtures, and in conjunction with Test Method D3203/D3203M, to obtain percent air voids. These values in turn may be used in determining the relative degree of compaction.4.2 Since specific gravity has no units, it must be converted to density in order to do calculations that require units. This conversion is made by multiplying the specific gravity at a given temperature by the density of water at the same temperature.4.3 This method can be used for 100 mm [4 in.] and 150 mm [6 in.] diameter cylindrical as well as cubical asphalt mixture specimens to correct for inconsistencies in sample weight determinations resulting from drainage of water from samples and inaccuracy in saturated surface dry weight of absorptive coarse and open-graded mixes. Asphalt mixes such as stone matrix asphalt (SMA), porous friction course, and coarse-graded mixes with significant surface texture and interconnected voids can be tested with this method. Follow manufacturer recommendation for appropriate bag sizes to be utilized with cubical and abnormally shaped samples.4NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method covers the determination of bulk specific gravity of compacted asphalt mixtures by the vacuum sealing method.1.2 This method can be used for compacted cylindrical and cubical laboratory and field asphalt mixture specimens.1.3 The bulk specific gravity of the compacted asphalt mixtures may be used in calculating the unit weight of the mixture.1.4 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 The laboratory fatigue life determined by this standard for beam specimens has been used to estimate the fatigue life of asphalt mixture pavement layers under repeated traffic loading. Although the field performance of asphalt mixtures is impacted by many factors (traffic variation, loading rate, and wander; climate variation; rest periods between loads; aging; etc.), it has been more accurately predicted when laboratory properties are known along with an estimate of the strain level induced at the layer depth by the traffic wheel load traveling over the pavement.NOTE 2: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method provides a procedure for determining a fatigue curve that is developed using three or more strain levels. The resulting data can be used in the fatigue models for mechanistic-empirical pavement design (that is, Pavement ME). Failure points are determined for estimating the fatigue life of 380 mm long by 50 mm thick by 63 mm in breadth (width) asphalt mixture beam (rectangular prism) specimens sawed from laboratory or field-compacted asphalt mixture, which are subjected to repeated flexural bending.1.2 The largest nominal maximum aggregate size (NMAS) recommended for beams 50 mm thick is 19 mm. Beams made with an NMAS greater than 19 mm might significantly interfere with the material response, thereby affecting the repeatability of the test.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard, with the exception of degrees (°) where angle is specified in accordance with IEEE/ASTM SI 10.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Vapor pressure is a very important physical property of volatile liquids for shipping and storage.5.2 The vapor pressure of gasoline and gasoline-oxygenate blends is regulated by various government agencies.5.3 Specifications for volatile petroleum products generally include vapor pressure limits to ensure products of suitable volatility performance.5.4 In this test method, an air saturation procedure prior to the measurement is not required, thus eliminating losses of high volatile compounds during this step. This test method is faster and minimizes potential errors from improper air saturation. This test method permits VPX determinations in the field.5.5 This test method can be applied in online applications in which an air saturation procedure prior to the measurement cannot be performed.1.1 This test method covers the use of automated vapor pressure instruments to determine the vapor pressure exerted in vacuum by volatile, liquid petroleum products, hydrocarbons, and hydrocarbon-oxygenate mixtures including ethanol blends up to 85 % (volume fraction). This test method is suitable for testing samples with boiling points above 0 °C (32 °F) that exert a vapor pressure between 7 kPa and 150 kPa (1.0 psi and 21 psi) at 37.8 °C (100 °F) at a vapor-to-liquid ratio of 4:1. The liquid sample volume size required for analysis is dependent upon the vapor-to-liquid ratio chosen (see Note 1) and the measuring chamber volume capacity of the instrument (see 6.1.1 and Note 5).NOTE 1: The test method is suitable for the determination of the vapor pressure of volatile, liquid petroleum products at temperatures from 0 °C to 100 °C at vapor to liquid ratios of 4:1 to 1:1 (X = 4 to 1) and pressures up to 500 kPa (70 psi), but the precision statement (see Section 16) may not be applicable.NOTE 2: The precision (see Section 16) using 1 L containers was determined in a 2003 interlaboratory study (ILS);2 the precision using 250 mL containers was determined in a 2016 ILS.31.2 This test method also covers the use of automated vapor pressure instruments to determine the vapor pressure exerted in vacuum by aviation turbine fuels. This test method is suitable for testing aviation turbine fuel samples with boiling points above 0 °C (32 °F) that exert a vapor pressure between 0 kPa and 110 kPa (0 psi and 15.5 psi) at a vapor-to-liquid ratio of 4:1, in the temperature range from 25 °C to 100 °C (77 °F to 212 °F).NOTE 3: The precision (see Section 16) for aviation turbine fuels using 100 mL containers was determined in a 2007 ILS.41.3 The vapor pressure (VPX) determined by this test method at a vapor-liquid ratio of 4:1 (X = 4) of gasoline and gasoline-oxygenate blends at 37.8 °C can be correlated to the dry vapor pressure equivalent (DVPE) value determined by Test Method D5191 (see 16.3). This condition does not apply when the sample is aviation turbine fuel.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2 – 7.8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 This test method can be utilized to determine the fatigue resistance of asphalt mixtures. The test method is generally valid for specimens that are tested at intermediate temperatures. The three-point bending cylinder test samples are obtained by coring a 68 mm diameter cylinder from the center of a 150 mm diameter gyratory compacted sample, or horizontal coring from field cores or slabs cut from field sections. After coring, the sample is ready for testing and no further sample preparations steps are required. The two ends of the 68 mm diameter three-point bending cylinder sample do not need to be sliced.5.2 The Timoshenko beam theory is used to calculate the reduction in dynamic modulus for each loading cycle. The test can be used to investigate the fatigue behavior of asphalt mixtures at various strain levels, temperatures, and frequencies. The results can be used to compare the fatigue life (Nf) for different asphalt mixtures. The Nf value can be calculated as the 50 % reduction in dynamic modulus. The Nf value is an indicator of fatigue performance of asphalt mixtures containing various mix design properties, asphalt binder types and modifications, gradations, and recycled materials. Typically, a higher Nf value indicates better fatigue performance. The Nf value may be used to identify crack-prone mixtures in performance-based mix design or in construction acceptance procedures, or both.NOTE 1: The quality of the results produced by this test method are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this test method are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results may depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 This test method provides a procedure to determine the fatigue life (number of cycles to failure, Nf) of asphalt mixtures, and also the reduction in dynamic modulus (|E*|) with loading cycles, using cylindrical samples subjected to three-point cyclic bending. The results obtained from this test can be used to calibrate Viscoelastic Continuum Damage (VECD) models to obtain a damage characteristic curve, which in turn can be used to obtain fatigue lives (Nf) at a variety of temperatures, strain levels, and frequencies (a separate standard practice is being drafted for this procedure). Even though this test method is intended primarily for displacement (strain) controlled fatigue testing, certain sections may provide useful information for force-controlled tests.1.2 The test method describes the testing apparatus, instrumentation, specimen fabrication, and analysis procedures required to determine the number of cycles to failure of asphalt concrete.1.3 The text of this test method references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the test method.1.4 Units—The values stated in SI units are to be regarded as the standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
4.1 A standard test is necessary to establish a behavior pattern for spilled crude oils or petroleum products at different oil weathering stages.4.2 Water-in-oil mixtures vary with oil type and oil conditions such as weathering. Results from this test method form a baseline, and usually are a measure of behavior at sea.4.3 This test has been developed over many years using standardized equipment, test procedures, and to overcome difficulties noted in other test procedures.4.4 This test should be performed at the temperatures and degrees of weathering corresponding to the spill conditions of interest.1.1 This test method covers a procedure to determine the water-in-oil emulsification tendencies and stabilities of crude oils and petroleum products in the laboratory. The results of this test method can provide oil behavior data for input into oil spill models.1.2 This test method covers a specific method of determining emulsion tendencies and does not cover other procedures that may be applicable to determining emulsion tendencies.1.3 The test results obtained using this test method are intended to provide baseline data for the behavior of oil and petroleum products at sea and input to oil spill models.1.4 The test results obtained using this test method can be used directly to predict certain facets of oil spill behavior or as input to oil spill models.1.5 The accuracy of the test method depends very much on the representative nature of the oil sample used. Certain oils can form a variety of water-in-oil types depending on their chemical contents at the moment a sample is taken. Other oils are relatively stable with respect to the type formed1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The total fluorine, chlorine, and sulfur contained in aromatic hydrocarbon matrices can contribute to emissions, be harmful to many catalytic chemical processes, and lead to corrosion. This test method can be used to determine total sulfur and halogens in aromatic hydrocarbons and their mixtures. The results can be used for compliance determinations when acceptable to a regulatory authority using performance based criteria.1.1 This test method covers the individual determination of total fluorine, chlorine, and sulfur in aromatic hydrocarbons and their mixtures. Samples containing 0.10 mg/kg to 10 mg/kg of each element can be analyzed.1.2 This method can be applied to sample concentrations outside the range of the scope by dilution of the sample in an appropriate solvent to bring the total concentrations of fluorine, chlorine, and sulfur within the range covered by the test method. However, it is the responsibility of the analyst to verify the solubility of the sample in the solvent and that the diluted sample results conform to the precision and accuracy of the method.1.2.1 Special considerations must be made in order to attain detection limits below 1.0 mg/kg in a sample. The instrument must be clean and properly maintained to address potential sources of contamination, or carryover, or both. Multiple sequential injections shall be completed until a stable background is attained. A stable background is considered to be achieved when the analysis of a minimum of three consecutive system blanks have area counts equal to or less than 5 % RSD for the anions of interest.1.3 In determining the conformance of the test results using this method to applicable specifications, results shall be rounded off in accordance with the rounding-off method of Practice E29.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车