微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Many aircraft maintenance chemicals are used on components and structures which would be adversely affected by excessive dimensional change. This practice screens these chemicals to ensure compliance with specified weight change criteria.1.1 This practice covers the determination of the corrosiveness of aircraft maintenance chemicals on aircraft metals with time under conditions of total immersion by a combination of weight change measurements and visual qualitative determination of change.1.2 The values stated in SI units are to be regarded as standard. The values in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 p-tertiary-butylcatechol is commonly added to commercial butadiene in amounts of 50 mg/kg to 250 mg/kg as an oxidation inhibitor. This test method is suitable for use by both producers and users of butadiene within the limitations described in Section 1.1.1 This test method covers the determination of total p-tertiary-butylcatechol inhibitor added to polymerization and recycle grades of butadiene or to other C4 hydrocarbon mixtures containing no phenolic material other than catechol or no oxidized phenolic material other than that derived from oxidation of catechol. In general, all phenols and their quinone oxidation products are included in the calculated catechol content. Small amounts of polymer do not interfere. This test method is applicable over the range of TBC from 50 mg/kg to 500 mg/kg.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3.1 The user is advised to obtain LPG safety training for the safe operation of this test method procedure and related activities.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The emittance as measured by this test method can be used in the calculation of radiant heat transfer from surfaces that are representative of the tested specimens, and that are within the temperature range of the tested specimens.5.2 This test method can be used to determine the effect of service conditions on the emittance of materials. In particular, the use of this test method with furnace exposure (time at temperature) of the materials commonly used in all-metallic insulations can determine the effects of oxidation on emittance.5.3 The measurements described in this test method are conducted in a vacuum environment. Usually this condition will provide emittance values that are applicable to materials used under other conditions, such as in an air environment. However, it must be recognized that surface properties of materials used in air or other atmospheres may be different. In addition, preconditioned surfaces, as described in 5.2, may be altered in a vacuum environment because of vacuum stripping of absorbed gases and other associated vacuum effects. Thus, emittances measured under vacuum may have values that differ from those that exist in air, and the user must be aware of this situation. With these qualifications in mind, emittance obtained by this test method may be applied to predictions of thermal transference.5.4 Several assumptions are made in the derivation of the emittance calculation as described in this test method. They are that:5.4.1 The enclosure is a blackbody emitter at a uniform temperature,5.4.2 The total hemispherical absorptance of the completely diffuse blackbody radiation at the temperature of the enclosure is equal to the total hemispherical emittance of the specimen at its temperature, and5.4.3 There is no heat loss from the test section by convection or conduction. For most materials tested by the procedures as described in this test method, the effects of these assumptions are small and either neglected or corrections are made to the measured emittance.5.5 For satisfactory results in conformance with this test method, the principles governing the size, construction, and use of apparatus described in this test method should be followed. If these principles are followed, any measured value obtained by the use of this test method is expected to be accurate to within ±5 %. If the results are to be reported as having been obtained by this test method, all of the requirements prescribed in this test method shall be met.5.6 It is not practical in a test method of this type to establish details of construction and procedure to cover all contingencies that might offer difficulties to a person without technical knowledge concerning the theory of heat transfer, temperature measurements, and general testing practices. Standardization of this test method does not reduce the need for such technical knowledge. It is recognized also that it would be unwise to restrict in any way the development of improved or new methods or procedures by research workers because of standardization of this test method.1.1 This calorimetric test method covers the determination of total hemispherical emittance of metal and graphite surfaces and coated metal surfaces up to approximately 1400°C. The upper-use temperature is limited only by the characteristics (for example, melting temperature, vapor pressure) of the specimen and the design limits of the test facility. This test method has been demonstrated for use up to 1400 °C. The lower-use temperature is limited by the temperature of the bell jar.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is used for determination of the carbon content of water from a variety of natural, domestic, and industrial sources. In its most common form, this test method is used to measure organic carbon as a means of monitoring organic pollutants in industrial wastewater. These measurements are also used in monitoring waste treatment processes.5.2 The relationship of TOC to other water quality parameters such as chemical oxygen demand (COD) and total oxygen demand (TOD) is described in the literature (5).1.1 This test method covers the catalyzed hydroxyl radical oxidation system for the in-stream, online (Guide D5173) or laboratory analysis of total organic carbon, total carbon and total inorganic carbon in drinking water, wastewater, industrial process water, and effluent water. It is applicable to both dissolved and suspended materials. Suspended materials and particulates up to 2 mm in diameter can be analyzed.1.2 This test method allows for determination of TOC ≥ 1 mg/L, TC ≥ 1 mg/L, and TIC ≥ 1 mg/L. The lower and upper working ranges are restricted by instrument-dependent conditions (for example, sample volume, amount of each reactant) and can be adjusted for a wider range.1.3 This test method can be applied for the determination of total carbon (TC) and total inorganic carbon (TIC). Volatile or purgeable organic carbon (VOC, POC) can be determined separately by this test method (see Annex A1).1.4 This test method allows the measurement of organic and inorganic carbon concentration samples, and samples containing dissolved chlorides up to seawater chloride concentrations.1.5 The chemical oxidation process, applied in this test method, takes place at ambient pressure and temperature by using hydroxyl radicals. The advantage of catalytic hydroxyl radical oxidation is that it is free from seawater salinity interference.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 9.1.8 ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this standard. Users of this standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, are entirely their own responsibility.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Carbon dioxide is a respiration product of plants and animals and a decomposition product of organic matter and certain minerals. The atmosphere averages about 0.04 vol % of CO2. Surface waters generally contain less than 10 mg/L, except at local points of abnormal organic or mineral decomposition; however, underground water, particularly deep waters, may contain several hundred mg/L.4.2 When dissolved in water, CO2 contributes significantly to corrosion of water-handling systems. This is particularly troublesome in steam condensate systems. Loss of CO2 from an aqueous system can disturb the carbonate equilibrium and result in calcite encrustation of confining surfaces. Scaling of water heaters is a good example. Because of the delicate balance between corrosion and encrustation tendencies, much care must be given to control of CO2 and related species in water systems. Recarbonation of municipal supplies during final stages of softening and amine neutralization of steam condensate are applied for these purposes.1.1 These test methods cover the measurement of total or dissolved carbon dioxide present as carbon dioxide (CO2), carbonic acid, bicarbonate ion, and carbonate ion in water:  Range SectionsTest Method A (Gas Sensing Electrode) 2 to 800 mg/L 8 to 15Test Method B (CO2 Evolution, Coulometric Titration) 5 to 800 mg/L 16 to 241.2 Carbon dioxide may also be detected from carbonates present in particulates in samples.1.3 Test Method A is applicable to various natural waters and brines.1.4 Test Method B is applicable to natural waters, brines, and various industrial waters as delineated in 16.4.1.5 It is the user's responsibility to ensure the validity of these test methods on waters of untested matrices.1.6 Several test methods were discontinued from this standard in 1988. Refer to Appendix X1 for historical information.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Appreciable amounts of sediment in a residual fuel oil can cause fouling of facilities for handling, and give problems in burner mechanisms. Sediment can accumulate in storage tanks, on filter screens, or on burner parts, resulting in obstruction of the flow of oil from the tank to the burner.1.1 This test method covers the determination of total sediment up to 0.40  % m/m for distillate fuel oils containing residual components and to 0.50 % m/m in residual fuel oils having a maximum viscosity of 55 cSt (mm2/s) at 100 °C. Some fuels can exceed the maximum filtration time specified in this test method due to factors other than the presence of significant quantities of insoluble organic or inorganic material. This test method can be used for the assessment of total sediment after regimes of fuel pretreatment designed to accelerate the aging process.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2, 7.3, Annex A1, and X1.6.1.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This test method permits measurement of the fluorine content of coal for the evaluation of potential fluorine emission from coal combustion or conversion processes. When coal samples are combusted in accordance with this test method, the fluorine is quantitatively retained and is representative of the total fluorine concentration in whole coal.1.1 This test method covers the analysis of total fluorine in coal.1.2 This test method was successfully tested on coals containing 25 % ash or less.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.5 All accountability and quality control aspects of Guide D4621 apply to this test method.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 Facet Prosthesis Components—The facet replacement may comprise a variety of shapes and configurations. Its forms may include, but are not limited to, ball and socket articulating joints, joints having a free-floating or semi-constrained third body, metallic load-bearing surfaces, and spring and dampening mechanisms. Additionally, it may have a unilateral or bilateral design.5.2 These test methods are designed to quantify the static and dynamic characteristics of different designs of FPs. The tests are conducted in vitro in order to allow for analysis of individual devices and comparison of the mechanical performance of multiple designs.5.3 The loads applied to the FP may differ from the complex loading seen in vivo, and therefore, the results from these tests may not directly predict in vivo performance. The results, however, can be used to compare mechanical performance in different devices.5.4 Fatigue testing in a simulated body fluid or saline may cause fretting, corrosion, or lubricate the interconnections and thereby affect the relative performance of tested devices. This test should be conducted in a 0.9 % saline environmental bath at 37°C at a maximum rate of 10 Hz for metallic devices and 2 Hz for non-metallic devices. Other test environments such as a simulated body fluid, a saline drip or mist, distilled water, other type of lubrication or dry could also be used with adequate justification. Likewise, alternative test frequencies may be used with adequate justification to ensure that they do not impact the device performance.5.5 It is well known that the failure of materials is dependent upon stress, test frequency, surface treatments, and environmental factors. Therefore, when determining the effect of changing these parameters (for example, frequency, material, or environment), care should be taken to allow for appropriate interpretation of the results. In particular, it may be necessary to assess the influence of test frequency on device fracture while holding the test environment, implant materials and processing, and implant geometry constant.1.1 This practice provides guidance for the static and dynamic testing of Lumbar Total Facet Prostheses (FPs). These implants are intended to allow motion and lend support to one or more functional spinal unit(s) through replacement of the natural facets.1.2 These test methods are intended to provide a basis for the mechanical comparison among past, present, and future non-biologic FPs. These test methods allow comparison of devices with different methods of application to the lumbar spine. These test methods are intended to enable the user to mechanically compare devices and do not purport to provide performance standards for them.1.3 These test methods describe static and dynamic tests by specifying load types and specific methods of applying these loads.1.4 These test methods do not purport to address all clinically relevant failure modes for FPs, some of which will be device-specific. For example, these test methods do not address implant wear resistance under expected in vivo loads and motions. In addition, the biologic response to wear debris is not addressed in these test methods.1.5 Requirements are established for measuring displacements and evaluating the stiffness of an FP.1.6 Some devices may not be testable in all test configurations.1.7 The values stated in SI units are to be regarded as the standard with the exception of angular measurements, which may be reported in terms of either degrees or radians.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The life cycle and cleanliness of a recirculating steel mill rolling oil dispersion is affected by the amount of iron present. This iron consists mainly of iron from acid pickling residues and iron from attrition of the steel sheet or rolls during cold rolling. In sampling rolling oils for total iron it is difficult to prevent adherence of iron containing sludge to the sample container. Thus, the accuracy of a total iron determination from an aliquot sample is suspect. This practice provides a means for ensuring that all iron contained in a sample is included in the analysis.4.2 Although less significant, the ash content is still an essential part of the procedure for obtaining a total iron analysis. Generally, the ash will be mostly iron, and in many cases, could be used as a substitute for total iron in determining when to change the dispersion.FIG. 1 Possible Holding Fixture and Assembly System1.1 This test method describes a procedure for sampling and testing dispersions of rolling oils in water from operating steel rolling mills for determination of ash and total iron content. Its purpose is to provide a test method such that a representative sample may be taken and phenomenon such as iron separation, fat-emulsion separation, and so forth, do not contribute to analytical error in determination of ash and total iron.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Sections 6 and 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

4.1 This practice is intended for the collection of airborne fungal spores or fragments, or both, using inertial impaction.4.2 It is the responsibility of the user to assure that they are in compliance with all local, state and federal regulations governing the inspection of buildings for fungal colonization and the collection of associated samples.4.3 This practice is intended to provide the user with a basic understanding of the equipment, materials and instructions necessary to effectively collect air samples using an inertial impactor.4.4 This practice, when properly executed, may also be used for the evaluation of other types of airborne particles with the capturing characteristics appropriate for inertial impactor, and for which appropriate analytical methods exist. Such particles may include dust mites, skin cells, pollen, and other materials.1.1 The purpose of this practice is to describe procedures for the collection of airborne fungal spores or fragments, or both, using inertial impaction sampling techniques.1.2 This practice is not intended to limit the user from the collection of other airborne particulates that may be of interest and captured through this technique.1.3 This practice presumes that the user has a fundamental understanding of field investigative techniques related to the scientific process, and sampling plan development and implementation. It is important to establish the related hypothesis to be tested and the supporting analytical methodology needed in order to identify the sampling media to be used and the laboratory conditions for analysis.1.4 This practice does not address the development of a formal hypothesis or the establishment of appropriate and defensible investigation and sampling objectives. It is presumed the investigator has the experience and knowledge base to address these issues.1.5 This practice does not provide the user sufficient information to allow for interpretation of the analytical results from sample collection. It is the user's responsibility to seek or obtain the information and knowledge necessary to interpret the sample results reported by the laboratory.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Cyanide and hydrogen cyanide are highly toxic. Regulations have been established to require the monitoring of cyanide in industrial and domestic wastewaters and surface waters.45.2 This test method is applicable for natural water, saline waters, and wastewater effluent.5.3 This test method may be used for process control in wastewater treatment facilities.5.4 The spot test outlined in Test Methods D2036, Annex A1, can be used to detect cyanide and thiocyanate in water or wastewater, and to approximate its concentration.1.1 This test method is used for determining total cyanide in drinking and surface waters, as well as domestic and industrial wastes. Cyanide ion (CN–), hydrogen cyanide in water (HCN(aq)), and the cyano-complexes of zinc, copper, cadmium, mercury, nickel, silver, and iron may be determined by this test method. Cyanide ions from Au(I), Co(III), Pd(II), and Ru(II) complexes are only partially determined.1.2 The method detection limit (MDL) is 1.0 μg/L cyanide and the minimum level (ML) is 3 μg/L. The applicable range of the method is 3 to 500 μg/L cyanide using a 200-μL sample loop. Extend the range to analyze higher concentrations by sample dilution or changing the sample loop volume.1.3 This test method can be used by analysts experienced with equipment using segmented flow analysis (SFA) and flow injection analysis (FIA) or working under the close supervision of such qualified persons.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazard statements are given in 8.5 and Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
192 条记录,每页 15 条,当前第 13 / 13 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页