5.1 The crystallinity of petroleum coke, as reflected by the Lc value, is a general measure of quality affecting suitability for end use and is a function of the heat treatment.5.2 The crystallite thickness is used to determine the extent of such heat treatment, for example, during calcination. The value of the Lc determined is not affected by coke microporosity or the presence of foreign, non-crystalline materials such as dedust oil.1.1 This test method covers the determination of the mean crystallite thickness of a representative, pulverized sample of calcined petroleum coke by interpretation of a X-ray diffraction pattern produced through conventional X-ray scanning techniques.1.2 Calcined petroleum coke contains crystallites of different thicknesses. This test method covers the determination of the average thickness of all crystallites in the sample by empirical interpretation of the X-ray diffraction pattern. The crystallite diameter (La) is not determined by this test method.1.3 The values stated in SI (metric) units are to be regarded as the standard. The inch-pound units given in parentheses are provided for information purposes only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 The particulate size distribution of vulcanizate particulate rubber is used for the purpose of assigning a product mesh or average particle size designation.4.2 The product designation for mesh size for the Ro-tap method is based on the size designation screen which allows a range for the upper limit retained of maximum 5 % for up to 850 μm (20 mesh) particles, maximum 10 % for 850 to 150 μm (20 to 100 mesh), and maximum 15 % for 125 to 20 μm (120 to 635 mesh). No rubber particles shall be retained on the zero screen (see Table 2, Classification D5603).4.3 The weight percent retained on a specific screen is noted.1.1 This test method describes the procedures for determining average particle size distribution of recycled vulcanizate particulate rubber by the mechanical vibratory sieve shaker test method for 90 μm (170 mesh) or larger particles.1.2 The values stated in SI units are to be regarded as the standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 These test methods provide procedures for determining the envelope-specific surface area of powders, from which is calculated an “average” particle diameter, assuming the particles are monosize, smooth surface, nonporous, spherical particles. For this reason, values obtained by these test methods will be reported as an average particle size or Fisher Number. The degree of correlation between the results of these test methods and the quality of powders in use will vary with each particular application and has not been fully determined.4.2 These test methods are generally applicable to all metal powders and related compounds, including carbides, nitrides, and oxides, for particles having diameters between 0.2 and 75 μm (MIC SAS) or between 0.5 and 50 μm (FSSS). They should not be used for powders composed of particles whose shape is too far from equiaxed - that is, flakes or fibers. In these cases, it is permissible to use the test methods described only by agreement between the parties concerned. These test methods shall not be used for mixtures of different powders, nor for powders containing binders or lubricants. When the powder contains agglomerates, the measured surface area may be affected by the degree of agglomeration. Methods of de-agglomeration such as that specified in Practice B859 may be used if agreed upon between the parties concerned.4.3 When an “average” particle size of powders is determined either the MIC SAS or the FSSS, it should be clearly kept in mind that this average size is derived from the determination of the specific surface area of the powder using a relationship that is true only for powders of uniform size and spherical shape. Thus, the results of these methods are only estimates of average particle size.1.1 These test methods use air permeability to determine an envelope-specific surface area and its associated average equivalent spherical diameter (from 0.2 to 75μm) of metal powders and related compounds. The powders may be analyzed in their “as-supplied” (shipped, received, or processed) condition or after they have been de-agglomerated or milled by a laboratory procedure (“lab milled”) such as that specified in Practice B859. The values obtained are not intended to be absolute but are generally useful on a relative basis for control purposes.1.2 Units—With the exception of the values for density and the mass used to determine density, for which the use of the gram per cubic centimetre (g/cm3) and gram (g) units is the longstanding industry practice; and the units for pressure, cm H2O - also long-standing practice; the values in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method is useful to both suppliers and users of powders, as outlined in 1.1 and 1.2, in determining particle size distribution for product specifications, manufacturing control, development, and research. 5.2 Users should be aware that sample concentrations used in this test method may not be what is considered ideal by some authorities, and that the range of this test method extends into the region where Brownian movement could be a factor in conventional sedimentation. Within the range of this test method, neither the sample concentration nor Brownian movement is believed to be significant. Standard reference materials traceable to national standards, of chemical composition specifically covered by this test method, are available from NIST,3 and perhaps other suppliers. 5.3 Reported particle size measurement is a function of the actual particle dimension and shape factor as well as the particular physical or chemical properties being measured. Caution is required when comparing data from instruments operating on different physical or chemical parameters or with different particle size measurement ranges. Sample acquisition, handling, and preparation can also affect reported particle size results. 5.4 Suppliers and users of data obtained using this test method need to agree upon the suitability of these data to provide specification for and allow performance prediction of the materials analyzed. 1.1 This test method covers the determination of particle size distribution of advanced ceramic powders. Experience has shown that this test method is satisfactory for the analysis of silicon carbide, silicon nitride, and zirconium oxide in the size range of 0.1 up to 50 µm. 1.1.1 However, the relationship between size and sedimentation velocity used in this test method assumes that particles sediment within the laminar flow regime. It is generally accepted that particles sedimenting with a Reynolds number of 0.3 or less will do so under conditions of laminar flow with negligible error. Particle size distribution analysis for particles settling with a larger Reynolds number may be incorrect due to turbulent flow. Some materials covered by this test method may settle in water with a Reynolds number greater than 0.3 if large particles are present. The user of this test method should calculate the Reynolds number of the largest particle expected to be present in order to judge the quality of obtained results. Reynolds number (Re) can be calculated using the following equation: where: D = the diameter of the largest particle expected to be present, in cm, ρ = the particle density, in g/cm3, ρ0 = the suspending liquid density, in g/cm3, g = the acceleration due to gravity, 981 cm/sec2, and η = the suspending liquid viscosity, in poise. 1.1.2 A table of the largest particles that can be analyzed with a suggested maximum Reynolds number of 0.3 or less in water at 35 °C is given for a number of materials in Table 1. A column of the Reynolds number calculated for a 50-µm particle sedimenting in the same liquid system is also given for each material. Larger particles can be analyzed in dispersing media with viscosities greater than that for water. Aqueous solutions of glycerine or sucrose have such higher viscosities. 1.2 The procedure described in this test method may be applied successfully to other ceramic powders in this general size range, provided that appropriate dispersion procedures are developed. It is the responsibility of the user to determine the applicability of this test method to other materials. Note however that some ceramics, such as boron carbide and boron nitride, may not absorb X-rays sufficiently to be characterized by this analysis method. 1.3 The values stated in cgs units are to be regarded as the standard, which is the long-standing industry practice. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific hazard information is given in Section 8. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
This test method details the standard procedures for the determination of the particle size distribution of alumina or quartz powders using X-ray monitoring of gravity sedimentation. This test procedure shall make use of an X-ray sedimentation apparatus, and ultrasonic probe or bath. An aqueous homogeneous dispersion of the specimen is permitted to settle in a cell. The decrease in particle concentration over a programmed settling distance is monitored by an X-ray beam passing through the sedimenting dispersion to a detector. The specimen concentration at any given sedimentation distance is inversely proportional to the X-ray flux and the equivalent diameter (spherical) is calculated from Stokes' law.1.1 This test method covers the determination of the particle size distribution of alumina or quartz powders in the range from 0.5 μm to 50 μm and having a median particle diameter from 2.5 μm to 10 μm using a sedimentation method. This test method is one of several found valuable for the measurement of particle size. Instruments used for this test method employ a constant intensity X-ray beam that is passed through a sedimenting dispersion of particles.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 This practice is primarily intended for use by associations, third-party grading agencies, technical societies and other groups that develop national design standards and use recommendations for round timber piles.4.2 This practice provides procedures for establishing compression parallel to grain and bending stresses for round timber piles including: sampling of material for testing; methods of test and property calculation procedures; distribution analysis of test data; procedures for determining adjustments for critical section location; pile oversize, load sharing and treatment; and procedures for deriving allowable stresses.4.3 In using allowable stresses established under this practice, factors specific to each end use which may affect the performance of the pile system shall be considered by the designer. Such factors include the location of the critical section, the bearing capacity of the soil, the ability of the pile to withstand driving forces, the properties of the cap or load distributive element tying piles together and the loading and conditions of service.1.1 This practice contains procedures for establishing allowable compression parallel to grain and bending stresses for round timbers used for piling, based on results from full-size tests.NOTE 1: Allowable stresses for compression perpendicular to grain and shear properties are established in accordance with the provisions of Practice D2899.1.2 Stresses established under this practice are applicable to piles conforming to the size, quality, straightness, spiral grain, knot, shake and split provisions of Specification D25.1.3 A commentary on the practice is available from ASTM International.1.4 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 By following this test method, the particle size, particle size distribution and particle shape of particulates in liquid paint and pigment dispersions can be measured.5.2 Particle size, particle size distribution and particle shape have a great effect on the color, opacity and gloss of paints. Reproducing these characteristics is critical to the quality and performance of the paint produced.5.3 The dynamic imaging instrument is useful during manufacturing to detect oversize particles as well as the required size distribution of particles in order to provide quality and consistency from batch to batch.1.1 This test method covers the determination of particle size distribution and particle shape of liquid paints and pigmented liquid coatings by Dynamic Image Analysis. This method includes the reporting of particles ≥1 µm in size and up to 300 µm in size.NOTE 1: Shape is used to classify particles, droplets and bubbles and is not a reporting requirement.NOTE 2: The term paint(s) as used in this document includes liquid paint and liquid pigmented coatings.1.1.1 Some paints may be too viscous to flow through the imaging instrument without dilution which may be used to help the paint flow as long as significant contamination is not introduced into the paint.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The ability to correlate results of analyzers to sieve sets enables the use of non-sieve methods to be employed that give comparable results to each other.5.2 The use of analyzers for proppant measurement has the benefit of providing particle shape characteristics which are important in the performance of these materials. Shape analysis is currently done by operator’s determination based on a visual observation of a small number of particles per API 19C. Available information from imaging analysis of many particles can be used to assess the proppant shape characteristics as opposed to just a small number.1.1 This practice describes procedural steps to create a correlation that can be used to compare results of proppant size distributions between dynamic imaging analyzers (analyzers) and prescribed sieve sets.1.2 The proppant size and distribution specifications that are included in this practice are listed in API Standard 19C (API 19C) and shown in Table 1, however as industry evolves additional specifications may come into use and this practice can be used with those as well.1.3 This practice may not be applicable to all proppant types and designations. The acceptability of the correlations determined are judged by the operator.1.4 The values stated in SI units are to be regarded as the standard, except sieve designations are typically identified using the ‘alternative’ system in accordance with Practice E11, such as 3 in. and No. 200 instead of the ‘standard’ system of 75 mm and 75 µm, respectively.1.5 Observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this standard.1.5.1 The procedures used to specify how data are collected/recorded and calculated in Practice D6026 are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of these test methods to consider significant digits used in analysis methods for engineering data.1.6 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title means only that the document has been approved through the ASTM consensus process.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车