5.1 This test has been widely used as an indicator of the relative quality or competence of various sources of aggregate having similar mineral compositions. The results do not automatically permit valid comparisons to be made between sources distinctly different in origin, composition, or structure. Assign specification limits with extreme care in consideration of available aggregate types and their performance history in specific end uses. The percent loss determined by this test method has no known consistent relationship to the percent loss for the same material when tested by Test Method C535.1.1 This test method covers a procedure for testing of coarse aggregates with a maximum size smaller than 37.5 mm ([11/2 in.] for resistance to degradation using the Los Angeles testing machine (Note 1).NOTE 1: A procedure for testing coarse aggregate larger than 19.0 mm [3/4 in.] is covered in Test Method C535. Thus coarse aggregates with a maximum size between 19 mm [3/4 in.] and 37.5 mm [11/2 in.] may be tested by Test Method C535 or Test Method C131/C131M.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.NOTE 2: Sieve size is identified by its standard designation in Specification E11. The Alternative designation given in parentheses is for information only and does not represent a different standard sieve size.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This practice provides a way to estimate the average grain size of polycrystalline materials. It is based on EBSD measurements of crystallographic orientation which are inherently quantitative in nature. This method has specific advantage over traditional optical grain size measurements in some materials, where it is difficult to find appropriate metallographic preparation procedures to adequately delineate grain boundaries.1.1 This practice is used to determine grain size from measurements of grain areas from automated electron backscatter diffraction (EBSD) scans of polycrystalline materials.1.2 The intent of this practice is to standardize operation of an automated EBSD instrument to measure ASTM G directly from crystal orientation. The guidelines and caveats of E112 apply here, but the focus of this standard is on EBSD practice.1.3 This practice is only applicable to fully recrystallized materials.1.4 This practice is applicable to any crystalline material which produces EBSD patterns of sufficient quality that a high percentage of the patterns can be reliably indexed using automated indexing software.1.5 The practice is applicable to any type of grain structure or grain size distribution.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 One of the factors affecting the image quality of a radiographic image is geometric unsharpness. The degree of geometric unsharpness is dependent upon the focal spot size of the radiation source, the distance between the source and the object to be radiographed, the distance between the object to be radiographed and the image plane (film, imaging plate, Digital Detector Array (DDA), or radioscopic detector). This test method allows the user to determine the effective focal spot size (dimensions) of the X-ray source. This result can then be used to establish source to object and object to image detector distances appropriate for maintaining the desired degree of geometric unsharpness or maximum magnification possible, or both, for a given radiographic imaging application. The accuracy of this method is dependent upon the spatial resolution of the imaging system, magnification, and signal-to-noise of the resultant images.1.1 The image quality and the resolution of X-ray images highly depend on the characteristics of the focal spot. The imaging qualities of the focal spot are based on its two dimensional intensity distribution as seen from the imaging place.1.2 This test method provides instructions for determining the effecting size (dimensions) of mini and micro focal spots of industrial X-ray tubes. It is based on the European standard, EN 12543–5, Non-destructive testing - Characteristics of focal spots in industrial X-ray systems for use in non-destructive testing - Part 5: Measurement of the effective focal spot size of mini and micro focus X-ray tubes.1.3 This standard specifies a method for the measurement of effective focal spot dimensions from 5 up to 300 μm of X-ray systems up to and including 225 kV tube voltage, by means of radiographs of edges. Larger focal spots should be measured using Test Method E1165 Standard Test Method for Measurement of Focal Spots of Industrial X-Ray Tubes by Pinhole Imaging.1.4 The same procedure can be used at higher kilovoltages by agreement, but the accuracy of the measurement may be poorer.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The test has been widely used as an indicator of the relative quality or competence of various sources of aggregate having similar mineral compositions. The results do not automatically permit valid comparisons to be made between sources distinctly different in origin, composition, or structure. Assign specification limits with extreme care in consideration of available aggregate types and their performance history in specific end uses.1.1 This test method covers testing sizes of coarse aggregate larger than 19 mm (3/4 in.) for resistance to degradation using the Los Angeles testing machine (Note 1).NOTE 1: A procedure for testing coarse aggregate smaller than 37.5 mm (11/2 in.) is covered in Test Method C131/C131M.1.2 The values stated in SI units are to be regarded as the standard. The inch-pound values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
定价: 515元 加购物车
5.1 The particle size of fine mesh and powdered activated carbon is sometimes used to evaluate filter cake filtration rates and the filter penetration in filtering applications.5.2 The selection and handling of fine mesh or powdered activated carbon, and operation of processes using fine mesh or powdered activated carbon, requires the knowledge of the particle size.5.3 This test method is intended for single sieve testing only. For determination of particle size distribution of a sample, the test must be repeated using sieves with different openings.NOTE 1: Relative humidity (RH) can affect the repeatability and accuracy of this test. Activated carbon not at equilibrium with the RH of the ambient air may lose or gain weight accordingly, dependent upon whether the carbon picks up or loses moisture.1.1 This test method covers the determination of the particle size of powdered activated carbons using an air-jet sieve device. For purposes of this test method, powdered activated carbon is defined as activated carbon in particle sizes predominantly in a range of 80 mesh (0.180 mm) through 500 mesh (0.025 mm).1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 The MW averages and the MWD are important characteristics of a resin. They may be used for a variety of correlations for fundamental studies, processing, or product applications. The MW and MWD values may also be used for production quality control of resins.5.2 Limitations—Comparison of SEC molecular weight values should be made only if the data were obtained under identical chromatographic conditions.1.1 This practice covers the determination of apparent molecular weight (MW) averages and molecular weight distributions (MWD) for THF-soluble hydrocarbon, rosin and terpene resins by size-exclusion chromatography (SEC). This technique is not absolute; it requires calibration with standards of known molecular weight. This practice is applicable to resins containing molecular-weight components that have elution volumes falling within the elution volume range defined by polystyrene standards.NOTE 1: SEC is also known as gel permeation chromatography (GPC).1.2 SEC systems employ low-volume liquid chromatography components and columns packed with relatively small (generally 3 to 20 μm) microporous particles. High-performance liquid chromatography instrumentation and automated data handling systems for data acquisition and processing are also required.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Particle-size distribution (gradation) is a descriptive term referring to the proportions by dry mass of a soil distributed over specified particle-size ranges. The gradation curve generated using this method yields the distribution of silt and clay size fractions present in the soil based on size definitions, not mineralogy or Atterberg limit classification.5.2 Unless the sedimentation sample is representative of the entire sample, the sedimentation results must be combined with a sieve analysis to obtain the complete particle size distribution.5.3 The clay size fraction is material finer than 2 µm. The clay size fraction is used in combination with the Plasticity Index (Test Methods D4318) to compute the activity, which provides an indication of the mineralogy of the clay fraction.5.4 The gradation of the silt and clay size fractions is an important factor in determining the susceptibility of fine-grained soils to frost action.5.5 The gradation of a soil is an indicator of engineering properties such as hydraulic conductivity, compressibility, and shear strength. However, soil behavior for engineering and other purposes is dependent upon many factors, such as effective stress, mineral type, structure, plasticity, and geological origin, and cannot be based solely upon gradation.5.6 Some types of soil require special treatment in order to correctly determine the particle sizes. For example, chemical cementing agents can bond clay particles together and should be treated in an effort to remove the cementing agents when possible. Hydrogen peroxide and moderate heat can digest organics. Hydrochloric acid can remove carbonates by washing and Dithionite-Citrate-Bicarbonate extraction can be used to remove iron oxides. Leaching with test water can be used to reduce salt concentration. All of these treatments, however, add significant time and effort when performing the sedimentation test and are allowable but outside the scope of this test method.5.7 The size limits of the sedimentation test are from about 100 µm to about 0.1 µm. The length of time required to obtain a stable initial reading on the hydrometer controls the upper range of results, and the test duration controls the lower range.5.8 The shape and density of the grains are important to the results. Stokes’ Law is assumed to be valid for spherical particles even though fine silt- and clay-sized particles are more likely to be plate-shaped and have greater mineral densities than larger particles.5.9 High plasticity clays develop structured water layers on their surfaces. According to Zhang and Lu3 this near surface water can be as dense as 1.4 g/L. This high-density structured water causes an error in this test method and shifts the particle size distribution curve upwards. Correction for the structured water is beyond the scope of this standard but values of percent passing above 100 % are possible and should not be excluded from the report.NOTE 5: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 This test method covers the quantitative determination of the distribution of particle sizes of the fine-grained portion of soils. The sedimentation by hydrometer method is used to determine the particle-size distribution (gradation) of the material that is finer than the No. 200 (75-µm) sieve and larger than about 0.2-µm. The test is performed on material passing the No. 10 (2.0-mm) or finer sieve and the results are presented as the mass percent finer of this fraction versus the log of the particle diameter.1.2 This method can be used to evaluate the fine-grained fraction of a soil with a wide range of particle sizes by combining the sedimentation results with results from a sieve analysis using D6913 to obtain the complete gradation curve. The method can also be used when there are no coarse-grained particles or when the gradation of the coarse-grained material is not required or not needed.NOTE 1: The significant digits recorded in this test method preclude obtaining the grain size distribution of materials that do not contain a significant amount of fines. For example, clean sands will not yield detectable amounts of silt and clay sized particles, and therefore should not be tested with this method. The minimum amount of fines in the sedimentation specimen is 15 g.1.3 When combining the results of the sedimentation and sieve tests, the procedure for obtaining the material for the sedimentation analysis and calculations for combining the results will be provided by the more general test method, such as Test Methods D6913 (Note 2).NOTE 2: Subcommittee D18.03 is currently developing a new test method “Test Method for Particle-Size Analysis of Soils Combining the Sieve and Sedimentation Techniques.”1.4 The terms “soil” and “material” are used interchangeably throughout the standard.1.5 The sedimentation analysis is based on the concept that larger particles will fall through a fluid faster than smaller particles. Stokes’ Law gives a governing equation used to determine the terminal velocity of a spherical particle falling through a stationary liquid. The terminal velocity is proportional to the square of the particle diameter. Therefore, particles are sorted by size in both time and position when settling in a container of liquid.1.5.1 Stokes’ Law has several assumptions which are: the particles are spherical and smooth; there is no interference between the particles; there is no difference between the current in the middle of the container and the sides; flow is laminar; and the particles have the same density. These assumptions are applied to soil particles of various shapes and sizes.1.6 A hydrometer is used to measure the fluid density and determine the quantity of particles in suspension at a specific time and position. The density of the soil-water suspension depends upon the concentration and specific gravity of the soil particles and the amount of dispersant added. Each hydrometer measurement at an elapsed time is used to calculate the percentage of particles finer than the diameter given by Stokes’ Law. The series of readings provide the distribution of material mass as a function of particle size.1.7 This test method does not cover procurement of the sample or processing of the sample prior to obtaining the reduced sample in any detail. It is assumed that the sample is obtained using appropriate methods and is representative of site materials or conditions. It is also assumed that the sample has been processed such that the reduced sample accurately reflects the particle-size distribution (gradation) of this finer fraction of the material.1.8 Material Processing—Material is tested in the moist or as-received state unless the material is received in an air-dried state. The moist preparation method shall be used to obtain a sedimentation test specimen from the reduced sample. Air-dried preparation is only allowed when the material is received in the air-dried state. The method to be used may be specified by the requesting authority; however, the moist preparation method shall be used for referee testing.1.9 This test method is not applicable for the following soils:1.9.1 Soils containing fibrous peat.1.9.2 Soils containing less than approximately 5 % of fine-grained material (Note 1).1.9.3 Soils containing extraneous matter, such as organic solvents, oil, asphalt, wood fragments, or similar items (Note 3).NOTE 3: If extraneous matter, such as wood, can be easily removed by hand, it is permissible to do so. However, there may be cases where the extraneous matter is being evaluated as part of the material and it should not be removed from the material.1.9.4 Materials that contain cementitious components, such as cement, fly ash, lime, or other stabilization admixtures.1.10 This test method may not produce consistent test results within and between laboratories for the following soils. To test these soils, this test method must be adapted and these adaptations documented.1.10.1 Soils that flocculate during sedimentation. Such materials may need to be treated to reduce salinity or alter the pH of the suspension.1.10.2 Friable soils in which processing changes the gradation of the soil. Typical examples of these soils are some residual soils, most weathered shales, decomposed granites, and some weakly cemented soils.1.10.3 Soils that will not readily disperse, such as glauconitic clays or some dried plastic clays.1.11 Samples that are not soils, but are made up of particles may be tested using this method. The applicable sections above should be used in applying this standard.1.12 Units—The values stated in SI units are to be regarded as standard. Except the sieve designations, they are identified using the “alternative” system in accordance with Practice E11, such as 3-in. and No. 200, instead of the “standard” designation of 75-mm and 75-µm, respectively. Reporting of test results in units other than SI shall not be regarded as non-conformance with this test method. The use of balances or scales recording pounds of mass (lbm) shall not be regarded as nonconformance with this standard.1.13 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026, unless superseded by this test method.1.13.1 The procedures used to specify how data are collected/recorded and calculated in the standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this test method to consider significant digits used in analysis methods for engineering or other data.1.14 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.15 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 843元 加购物车
5.1 The bulk density is an indicator of calcined petroleum coke porosity and packing capability which is an important coke property for anode production in aluminum industry. This procedure will allow an automated measurement of specific sized fractions ranging from 8 mm to 0.25 mm coke particles.5.2 Results from this test method are used in determining coke specifications, classification purposes, and for quality control.1.1 The test method covers the determination of bulk density for a specific size fraction of calcined petroleum coke using an automated pycnometer that compacts coke by applying transaxial pressure under a controlled force.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 General Utility—The molecular weight (MW) and molecular weight distribution (MWD) are fundamental characteristics of a polymer sample. They are used for a wide variety of correlations for fundamental studies, processing, or product applications. For example, the observed MWD is compared to one predicted from assumed kinetics or mechanisms for a polymerization reaction. Differences between the values will allow alteration of theory or experimental design. Similarly, the strength, melt flow, and other properties of a polymer sample usually are dependent on MW and MWD. Determinations of MW and MWD are used for quality control of polymers.5.2 Limitations—Because of the need for specific calibration of the polymer type under study, and because of the specific nature of polymer/solvent/column-packing interactions, this test method is valid only for polystyrene and non-exclusion effects are to be avoided. However, many of the principles of the method have been applied in generating HPSEC methods for other polymer systems, for example, using the principles of universal calibration. (see Practice D3016).1.1 This test method covers the determination of molecular weight (MW) averages and the distribution of molecular weights for linear, soluble polystyrene by high-performance size-exclusion chromatography (HPSEC). This test method is not absolute and requires the use of commercially available narrow molecular weight distribution (MWD) polystyrene standards for calibration. This test method is applicable for samples containing molecular weight components that have elution volumes falling within the elution volume range defined by polystyrene standards (that is, molecular weights generally from 2000 to 2 000 000 g·mol−1).1.2 The HPSEC is differentiated from traditional size-exclusion chromatography SEC (also referred to as gel permeation chromatography (GPC)) in that the number of theoretical plates per metre with an HPSEC system is at least ten times greater than that for traditional SEC (see Terminology D883 and Practice D3016).2 The HPSEC systems employ low-volume liquid chromatography components and columns packed with relatively small (generally 3 to 20 μm) microporous particles. High-performance liquid chromatography instrumentation and automated data handling systems for data acquisition and processing are required.1.3 The values stated in SI units are to be regarded as the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9.NOTE 1: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车