4.1 Neutron radiation effects are considered in the design of light-water moderated nuclear power reactors. Changes in system operating parameters may be made throughout the service life of the reactor to account for these effects. A surveillance program is used to measure changes in the properties of actual vessel materials due to the irradiation environment. This practice describes the criteria that should be considered in evaluating surveillance program test capsules.4.2 Prior to the first issue date of this standard, the design of surveillance programs and the testing of surveillance capsules were both covered in a single standard, Practice E185. Between its provisional adoption in 1961 and its replacement linked to this standard, Practice E185 was revised many times (1966, 1970, 1973, 1979, 1982, 1993 and 1998). Therefore, capsules from surveillance programs that were designed and implemented under early versions of the standard were often tested after substantial changes to the standard had been adopted. For clarity, the standard practice for surveillance programs has been divided into the new Practice E185 that covers the design of new surveillance programs and this standard practice that covers the testing and evaluation of surveillance capsules. Modifications to the standard test program and supplemental tests are described in Guide E636.4.3 This practice is intended to cover testing and evaluation of all light-water moderated reactor pressure vessel surveillance capsules. The practice is applicable to testing of capsules from surveillance programs designed and implemented under all previous versions of Practice E185.4.4 The radiation-induced changes in the properties of the reactor pressure vessel are generally monitored by measuring the index temperatures, the upper-shelf energy and the tensile properties of specimens from the surveillance program capsules. The significance of these radiation-induced changes is described in Practice E185.4.5 Alternative methods exist for testing surveillance capsule materials. Some supplemental and alternative testing methods are available as indicated in Guide E636. Direct measurement of the fracture toughness is also feasible using the To Reference Temperature method defined in Test Method E1921 or J-integral techniques defined in Test Method E1820. Additionally, hardness testing can be used to supplement standard methods as a means of monitoring the irradiation response of the materials.4.6 Practice E853 describes a methodology that may be used in the analysis and interpretation of neutron dosimetry data and the determination of neutron fluence. Regulators or other sources may describe different methods.4.7 Guide E900 describes a method for predicting the TTS. Regulators or other sources may describe different methods for predicting TTS.4.8 Guide E509 provides direction for development of a procedure for conducting an in-service thermal anneal of a light-water cooled nuclear reactor vessel and demonstrating the effectiveness of the procedure including a post-annealing vessel radiation surveillance program.1.1 This practice covers the evaluation of test specimens and dosimetry from light water moderated nuclear power reactor pressure vessel surveillance capsules.1.2 Additionally, this practice provides guidance on reassessing withdrawal schedule for design life and operation beyond design life.1.3 This practice is one of a series of standard practices that outline the surveillance program required for nuclear reactor pressure vessels. The surveillance program monitors the irradiation-induced changes in the ferritic steels that comprise the beltline of a light-water moderated nuclear reactor pressure vessel.1.4 This practice along with its companion surveillance program practice, Practice E185, is intended for application in monitoring the properties of beltline materials in any light-water moderated nuclear reactor.21.5 Modifications to the standard test program and supplemental tests are described in Guide E636.1.6 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 These test methods are useful as rapid, nondestructive techniques for the in-place determination of the density of unhardened concrete. The backscatter test method is also useful for the same purpose on hardened concrete. The fundamental assumptions inherent in the test methods are that Compton scattering is the dominant interaction and that the material under test is homogeneous.4.2 These test methods are suitable for control and for assisting in acceptance testing during construction, for evaluation of concrete quality subsequent to construction, and for research and development.NOTE 1: Care must be taken when using these test methods in monitoring the degree of consolidation, which is the ratio of the actual density achieved to the maximum density attainable with a particular concrete. The test methods presented here are used to determine the actual density. A density measurement, by any test method, is a function of the components of the concrete and may vary, to some extent, in response to the normal, acceptable variability of those components.4.3 Test results may be affected by reinforcing steel, by the chemical composition of concrete constituents, and by sample heterogeneity. The variations resulting from these influences are minimized by instrument design and by the user's compliance with appropriate sections of the test procedure. Results of tests by the backscatter test method may also be affected by the density of underlying material. The backscatter test method exhibits spatial bias in that the apparatus's sensitivity to the material under it decreases with distance from the surface of the concrete.NOTE 2: Typically, backscatter gauge readings represent the density in the top 75 to 100 mm [3 to 4 in.] of material.1.1 These test methods cover the determination of the in-place density of unhardened and hardened concrete, including roller compacted concrete, by gamma radiation. For notes on the nuclear test see Appendix X1.1.2 Two test methods are described, as follows: Section Test Method A—Direct Transmission Test Method B—Backscatter 891.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.
定价: 590元 加购物车