微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Summary: 5.1.1 Residual stresses are present in almost all materials. They can be created during the manufacture or during the life of the material. Residual stresses can be a major factor in the failure of a material, particularly one subjected to alternating service loads or corrosive environments. Residual stress may also be beneficial, for example, the compressive stresses produced by shot peening. The hole-drilling strain-gage technique is a practical general-purpose method for determining residual stresses.1.1 Residual Stress Determination: 1.1.1 This test method specifies a hole-drilling procedure for determining in-plane residual stresses near the surface of an isotropic linearly elastic material. It is applicable to residual stress determinations where the stresses do not vary significantly across the diameter of the drilled hole. The measured stresses are the in-plane residual stresses that exist within the depth of the drilled hole. Stress sensitivity rapidly decreases with depth from the measured surface and deep interior stresses cannot be evaluated. The measured residual stresses are described as “uniform” if they remain approximately constant within the hole depth, “non-unifom” if they vary significantly.1.1.2 In general, “blind” holes are used, where the depth of the drilled hole and therefore the depth of the residual stress evaluation is less than the workpiece thickness. However, for a thin workpiece, it is also possible to do through-thickness measurements of uniform (membrane) stresses using a through-hole.1.2 Stress Measurement Range: 1.2.1 This test method applies in cases where material behavior is linear-elastic. When near-yeild residual stresses are present, it is possible for local yielding to occur due to the stress concentration around the drilled hole. Satisfactory measurement results can be achieved providing the residual stresses do not exceed about 80 % of the material yield stress for blind-hole drilling and about 50 % of the material yield stress for through-hole drilling.1.3 Workpiece Damage: 1.3.1 The hole-drilling method is often described as “semi-destructive” because the damage that it causes is localized and often does not significantly affect the usefulness of the workpiece. In contrast, most other mechanical methods for measuring residual stresses substantially destroy the workpiece. Since hole drilling does cause some damage, this test method should be applied only in those cases either where the workpiece is expendable, or where the introduction of a small shallow hole will not significantly affect the usefulness of the workpiece.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏
ASTM E517-19 Standard Test Method for Plastic Strain Ratio r for Sheet Metal Active 发布日期 :  1970-01-01 实施日期 : 

4.1 The plastic strain ratio r is a parameter that indicates the ability of a sheet metal to resist thinning or thickening when subjected to either tensile or compressive forces in the plane of the sheet. It is a measure of plastic anisotropy and is related to the preferred crystallographic orientations within a polycrystalline metal. This resistance to thinning or thickening contributes to the forming of shapes, such as cylindrical flat-bottom cups, by the deep-drawing process. The value of r , therefore, is considered a measure of sheet-metal drawability. It is particularly useful for evaluating materials intended for parts where a substantial portion of the blank is drawn from beneath the blank holder into the die opening. 4.2 For many materials the plastic strain ratio remains essentially constant over a range of plastic strains up to maximum applied force in a tension test. For materials that give different values of r at various strain levels, a superscript is used to designate the percent strain at which the value of r was measured. For example, if a 20 % elongation is used, the report would show r20. 4.3 Materials usually have different values of r when tested in different orientations relative to the rolling direction. The angle of sampling of the individual test specimen is noted by a subscript. Thus, for a test specimen whose length is aligned parallel to the rolling direction, plastic strain ratio, r , is reported as r0. If, in addition, the measurement was made at 20 % elongation and it was deemed necessary to note the percent strain at which the value was measured, the value would be reported as r020. 4.4 A material that has an upper yield strength (yield point) point followed by discontinuous yielding stretches unevenly while this yielding is taking place. In steels, this is associated with the propagation of Lüders' bands on the surface. The accuracy and reproducibility of the determination of plastic strain ratio, r , will be reduced unless the test is continued beyond this yield-point elongation. Similarly, the discontinuous yielding associated with large grain size in a material decreases the accuracy and reproducibility of determinations of plastic strain ratio, r , made at low strains. 1.1 This test method covers special tension testing for the measurement of the plastic strain ratio, r, of sheet metal intended for deep-drawing applications. 1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E1237-20 Standard Guide for Installing Bonded Resistance Strain Gages Active 发布日期 :  1970-01-01 实施日期 : 

4.1 Methods and procedures used in installing bonded resistance strain gages can have significant effects upon the performance of those sensors. Optimum and reproducible detection of surface deformation requires appropriate and consistent strain gage and bonding technique selection, surface preparation, procedures for gage installation and adhesive use, lead wire connection, validation of operation, and protective coating application.1.1 This guide provides guidelines for installing bonded resistance strain gages. It is not intended to be used for bulk or diffused semiconductor gages. This guide pertains only to adhesively bonded strain gages.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 In the utilization of structural materials in elevated temperature environments, components that are susceptible to fatigue damage may experience some form of simultaneously varying thermal and mechanical forces throughout a given cycle. These conditions are often of critical concern because they combine temperature dependent and cycle dependent (fatigue) damage mechanisms with varying severity relating to the phase relationship between cyclic temperature and cyclic mechanical strain. Such effects can be found to influence the evolution of microstructure, micromechanisms of degradation, and a variety of other phenomenological processes that ultimately affect cyclic life. The strain-controlled thermomechanical fatigue test is often used to investigate the effects of simultaneously varying thermal and mechanical loadings under idealized conditions, where cyclic theoretically uniform temperature and strain fields are externally imposed and controlled throughout the gage section of the specimen.1.1 This practice covers the determination of thermomechanical fatigue (TMF) properties of materials under uniaxially loaded strain-controlled conditions. A “thermomechanical” fatigue cycle is here defined as a condition where uniform temperature and strain fields over the specimen gage section are simultaneously varied and independently controlled. This practice is intended to address TMF testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this practice is specific to strain-controlled testing, many sections will provide useful information for force-controlled or stress-controlled TMF testing.1.2 This practice allows for any maximum and minimum values of temperature and mechanical strain, and temperature-mechanical strain phasing, with the restriction being that such parameters remain cyclically constant throughout the duration of the test. No restrictions are placed on environmental factors such as pressure, humidity, environmental medium, and others, provided that they are controlled throughout the test, do not cause loss of or change in specimen dimensions in time, and are detailed in the data report.1.3 The use of this practice is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E1561-20 Standard Practice for Analysis of Strain Gage Rosette Data Active 发布日期 :  1970-01-01 实施日期 : 

This practice defines a reference axis for each of the two principal types of rosette configurations and the equations used for three-element strain gage rosette data analysis. The primary uses of this analysis procedure are to determine the directions and magnitudes of the principal surface strains, and to determine residual stresses. This is important for consistency in reporting results and for avoiding ambiguity in data analysis, especially when computers are used. There are several possible sets of equations, but the set presented herein is perhaps the most common.1.1 The two primary uses of three-element strain gage rosettes are (a) to determine the directions and magnitudes of the principal surface strains and (b) to determine residual stresses. Residual stresses are treated in a separate ASTM standard, Test Method E837. This practice defines a reference axis for each of the two principal types of rosette configurations used and presents equations for data analysis. This is important for consistency in reporting results and for avoiding ambiguity in data analysis—especially when computers are used. There are several possible sets of equations, but the set presented here is perhaps the most common.1.2 The equations in 4.2 and 4.3 of this practice are derived from infinitesimal (linear) strain theory. They are very accurate for the low strain levels normally encountered in the stress analysis of typical metal test objects. They become detectably inaccurate for strain levels greater than about 1 %. Rosette data reduction for larger strains is beyond the scope of this practice.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 This guide is intended to describe heat management program elements that foundries use to prevent or manage heat strain and heat-related illness. Specifically, the guide:4.1.1 Provides an objective framework for recognizing heat stress and heat strain, and4.1.2 Facilitates use of best practices to manage heat exposures to minimize heat strain and prevent heat-related illness.1.1 This guide is intended to establish best practices for recognizing and managing occupational heat stress and heat strain in foundry environments.1.2 Objectives of the foundry heat stress and heat strain management guide are as follows:1.2.1 Provide an objective framework for recognizing heat stress and heat strain, and1.2.2 Facilitate use of best practices to manage heat exposures to minimize heat strain and prevent heat-related illness.1.3 In this guide, procedures necessary to manage heat stress and heat strain in foundries are described.1.4 Key elements of this guide include definitions of heat stress and heat strain, plus techniques for recognizing, communicating, managing, and controlling heat stress and heat strain to prevent heat-related illnesses.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Low strain impact integrity testing provides acceleration or velocity and force (optional) data on slender structural elements (that is, structural columns, driven concrete piles, cast in place concrete piles, concrete filled steel pipe piles, timber piles, etc.). The method works best on solid concrete sections, and has limited application to unfilled steel pipe piles, H piles, or steel sheet piles. These data assist evaluation of the pile cross-sectional area and length, the pile integrity and continuity, as well as consistency of the pile material, although evaluation is approximate. This test method will not provide information regarding the pile bearing capacity. It is generally helpful to consider the soil profile, construction method and site records when evaluating data obtained by this method. Other useful information to consider and compare with results of this test includes low strain integrity test results of similar piles at the same site, concrete cylinder or core strength test results, automated monitoring data on equipment placing the concrete when augered piles are used, or information obtained from crosshole sonic logging (Test Method D6760) or thermal integrity profiling (Test Methods D7949) if available.4.1.1 Methods of Testing: 4.1.1.1 Pulse Echo Method (PEM)—The pile head motion is measured as a function of time. The time domain record is then evaluated for pile integrity.4.1.1.2 Transient Response Method (TRM)—The pile head motion and force (measured with an instrumented hammer) are measured as a function of time. The data are evaluated usually in the frequency domain.1.1 This test method covers the procedure for determining the integrity of individual vertical or inclined piles by measuring and analyzing the velocity (required) and force (optional) response of the pile induced by an (hand held hammer or other similar type) impact device usually applied axially and perpendicularly to the pile head surface. This test method is applicable to long structural elements that function in a manner similar to any deep foundation units (such as driven piles, augeured piles, or drilled shafts), regardless of their method of installation provided that they are receptive to low strain impact testing.1.2 This standard provides minimum requirements for low strain impact testing of piles. Plans, specifications, and/or provisions prepared by a qualified engineer, and approved by the agency requiring the test(s), may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.7 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.NOTE 1: he quality of the result produced by this test method is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 are generally considered capable of competent and objective testing/sampling/ inspection/etc. Users of this test method are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The fracture toughness determined by this test method characterizes the resistance of a material to fracture by a slowly advancing steady-state crack (see 3.2.5) in a neutral environment under severe tensile constraint. The state of stress near the crack front approaches plane strain, and the crack-tip plastic region is small compared with the crack size and specimen dimensions in the constraint direction. A KIv or KIvj value may be used to estimate the relation between failure stress and defect size when the conditions described above would be expected, although the relationship may differ from that obtained from a KIc value (see Note 1). Background information concerning the basis for development of this test method in terms of linear elastic fracture mechanics may be found in Refs (6-15). 5.1.1 The KIv, KIvj, or KIvM value of a given material can be a function of testing speed (strain rate) and temperature. Furthermore, cyclic forces can cause crack extension at KI values less than KIv, and crack extension can be increased by the presence of an aggressive environment. Therefore, application of KIv in the design of service components should be made with an awareness of differences that may exist between the laboratory tests and field conditions. 5.1.2 Plane-strain fracture toughness testing is unusual in that there can be no advance assurance that a valid KIv, KIvj, or KIvM will be determined in a particular test. Therefore, it is essential that all the criteria concerning the validity of results be carefully considered as described herein. 5.2 This test method can serve the following purposes: 5.2.1 To establish the effects of metallurgical variables such as composition or heat treatment, or of fabricating operations such as welding or forming, on the fracture toughness of new or existing materials. 5.2.2 For specifications of acceptance and manufacturing quality control, but only when there is a sound basis for specification of minimum KIv, KIvj, or KIvM values, and then only if the dimensions of the product are sufficient to provide specimens of the size required for valid KIv determination (9). The specification of KIv values in relation to a particular application should signify that a fracture control study has been conducted on the component in relation to the expected history of loading and environment, and in relation to the sensitivity and reliability of the crack detection procedures that are to be applied prior to service and subsequently during the anticipated life. 5.2.3 To provide high spatial resolution in measuring plane strain fracture toughness variations in parent pieces of material (14). Note 2: The high spatial resolution is possible because of the small allowable specimen size criterion, B ≥ 1.25 (KIv /σYS)2 (9), and because the toughness is measured at approximately the midline of the specimen, and only in the material covered by the crack's lateral extent, which is about one third of the specimen's lateral dimension, B. 1.1 This test method covers the determination of plane-strain (chevron-notch) fracture toughnesses, KIv or KIvM, of metallic materials. Fracture toughness by this method is relative to a slowly advancing steady state crack initiated at a chevron-shaped notch, and propagating in a chevron-shaped ligament (Fig. 1). Some metallic materials, when tested by this method, exhibit a sporadic crack growth in which the crack front remains nearly stationary until a critical load is reached. The crack then becomes unstable and suddenly advances at high speed to the next arrest point. For these materials, this test method covers the determination of the plane-strain fracture toughness, KIvj or KIvM, relative to the crack at the points of instability. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

4.1 Strain-controlled fatigue is a phenomenon that is influenced by the same variables that influence force-controlled fatigue. The nature of strain-controlled fatigue imposes distinctive requirements on fatigue testing methods. In particular, cyclic total strain should be measured and cyclic plastic strain should be determined. Furthermore, either of these strains typically is used to establish cyclic limits; total strain usually is controlled throughout the cycle. The uniqueness of this test method and the results it yields are the determination of cyclic stresses and strains at any time during the tests. Differences in strain histories other than constant-amplitude alter fatigue life as compared with the constant amplitude results (for example, periodic overstrains and block or spectrum histories). Likewise, the presence of nonzero mean strains and varying environmental conditions may alter fatigue life as compared with the constant-amplitude, fully reversed fatigue tests. Care must be exercised in analyzing and interpreting data for such cases. In the case of variable amplitude or spectrum strain histories, cycle counting can be performed with Practice E1049.4.2 Strain-controlled fatigue can be an important consideration in the design of industrial products. It is important for situations in which components or portions of components undergo either mechanically or thermally induced cyclic plastic strains that cause failure within relatively few (that is, approximately <105) cycles. Information obtained from strain-controlled fatigue testing may be an important element in the establishment of design criteria to protect against component failure by fatigue.4.3 Strain-controlled fatigue test results are useful in the areas of mechanical design as well as materials research and development, process and quality control, product performance, and failure analysis. Results of a strain-controlled fatigue test program may be used in the formulation of empirical relationships between the cyclic variables of stress, total strain, plastic strain, and fatigue life. They are commonly used in data correlations such as curves of cyclic stress or strain versus life and cyclic stress versus cyclic plastic strain obtained from hysteresis loops at some fraction (often half) of material life. Examination of the cyclic stress–strain curve and its comparison with monotonic stress–strain curves gives useful information regarding the cyclic stability of a material, for example, whether the values of hardness, yield strength, ultimate strength, strain-hardening exponent, and strength coefficient will increase, decrease, or remain unchanged (that is, whether a material will harden, soften, or be stable) because of cyclic plastic straining (1).3 The presence of time-dependent inelastic strains during elevated temperature testing provides the opportunity to study the effects of these strains on fatigue life and on the cyclic stress-strain response of the material. Information about strain rate effects, relaxation behavior, and creep also may be available from these tests. Results of the uniaxial tests on specimens of simple geometry can be applied to the design of components with notches or other complex shapes, provided that the strains can be determined and multiaxial states of stress or strain and their gradients are correctly correlated with the uniaxial strain data.1.1 This test method covers the determination of fatigue properties of nominally homogeneous materials by the use of test specimens subjected to uniaxial forces. It is intended as a guide for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. While this test method is intended primarily for strain-controlled fatigue testing, some sections may provide useful information for force-controlled or stress-controlled testing.1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products.1.3 This test method is applicable to temperatures and strain rates for which the magnitudes of time-dependent inelastic strains are on the same order or less than the magnitudes of time-independent inelastic strains. No restrictions are placed on environmental factors such as temperature, pressure, humidity, medium, and others, provided they are controlled throughout the test, do not cause loss of or change in dimension with time, and are detailed in the data report.NOTE 1: The term inelastic is used herein to refer to all nonelastic strains. The term plastic is used herein to refer only to the time-independent (that is, noncreep) component of inelastic strain. To truly determine a time-independent strain the force would have to be applied instantaneously, which is not possible. A useful engineering estimate of time-independent strain can be obtained when the strain rate exceeds some value. For example, a strain rate of 1 × 10−3 sec−1 is often used for this purpose. This value should increase with increasing test temperature.1.4 This test method is restricted to the testing of uniform gage section test specimens subjected to axial forces as shown in Fig. 1(a). Testing is limited to strain-controlled cycling. The test method may be applied to hourglass specimens, see Fig. 1(b), but the user is cautioned about uncertainties in data analysis and interpretation. Testing is done primarily under constant amplitude cycling and may contain interspersed hold times at repeated intervals. The test method may be adapted to guide testing for more general cases where strain or temperature may vary according to application specific histories. Data analysis may not follow this test method in such cases.FIG. 1 Recommended Low-Cycle Fatigue SpecimensNOTE 1: * Dimension d is recommended to be 6.35 mm [0.25 in.]. See 7.1. Centers permissible. ** This diameter may be made greater or less than 2d depending on material hardness. In typically ductile materials diameters less than 2d are often employed and in typically brittle materials diameters greater than 2d may be found desirable.NOTE 2: Threaded connections are more prone to inferior axial alignment and have greater potential for backlash, particularly if the connection with the grip is not properly designed.1.5 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is useful for estimating the strain at the onset of necking in a uniaxial tension test (1). Practically, it provides an empirical parameter for appraising the relative stretch formability of similar metallic systems. The strain-hardening exponent is also a measure of the increase in strength of a material due to plastic deformation.5.2 The strain-hardening exponent may be determined over the entire plastic stress-strain curve or any portion(s) of the stress-strain curve specified in a product specification.NOTE 4: The engineering strain interval 10–20% is commonly used for determining the strain-hardening exponent, n, of formable low-carbon steel products5.3 This test method is not intended to apply to any portion of the true stress versus true strain curve that exhibits discontinuous behavior; however, the method may be applied by curve-smoothing techniques as agreed upon.NOTE 5: For example, those portions of the stress-strain curves for mild steel, aluminum, or other alloys that exhibit yield point and Lüders band elongation, twinning, or Portevin–Le Chatelier effect (PLC) may be characterized as behaving discontinuously.NOTE 6: Caution should be observed in the use of curve-smoothing techniques as they may affect the n-value.5.4 This test method is suitable for determining the tensile stress-strain response of metallic sheet materials in the plastic region prior to the onset of necking.5.5 The n-value may vary with the displacement rate or strain rate used, depending on the metal and test temperature.1.1 This test method covers the determination of a strain-hardening exponent by tension testing of metallic sheet materials for which plastic-flow behavior obeys the power curve given in the Introduction.NOTE 1: A single power curve may not be a satisfactory fit to the entire stress-strain curve between yield and necking. If such is the case, more than one value of the strain-hardening exponent may be obtained (2) by agreement using this test method.1.2 This test method is specifically for metallic sheet materials with thicknesses of at least 0.005 in. (0.13 mm) but not greater than 0.25 in. (6.4 mm). The method has successfully been and may be applied to other forms and thicknesses by agreement1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.NOTE 2: The value of the strain-hardening exponent, n, has no units and is independent of the units used in its determination1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
ASTM E1319-23 Standard Guide for High-Temperature Static Strain Measurement Active 发布日期 :  1970-01-01 实施日期 : 

4.1 The use of this guide is voluntary and is intended for use as a procedures guide for selection and application of specific types of strain gages for high-temperature installations. No attempt is made to restrict the type of strain gage types or concepts to be chosen by the user. The provisions of this guide may be invoked in specifications and procedures by specifying those that shall be considered mandatory for the purpose of the specific application. When so invoked, the user shall include in the work statement a notation that provisions of this guide shown as recommendation shall be considered mandatory for the purposes of the specification or procedure concerned, and shall include a statement of any exceptions to or modifications of the affected provisions of this guide.1.1 This guide covers the selection and application of strain gages for the measurement of static strain up to and including the temperature range from 425 °C to 650 °C (800 °F to 1200 °F). This guide reflects some state-of-the-art techniques in high-temperature strain measurement.1.2 This guide assumes that the user is familiar with the use of bonded strain gages and associated signal conditioning circuits and instrumentation as discussed in (1) and (2).2 The strain gage systems described are those that have proven effective in the temperature range of interest and were available at the time of issue of this guide. It is not the intent of this guide to limit the user to one of the strain gage types described nor is it the intent to specify the type of strain gage system to be used for a specific application. However, in using any strain gage system including those described, the proposer shall be able to demonstrate the capability of the proposed strain gage system to meet the selection criteria provided in Section 5 and the needs of the specific application.1.3 The devices and techniques described in this guide can sometimes be applicable at temperatures above and below the range noted, and for making dynamic strain measurements at high temperatures with proper precautions. The strain gage manufacturer should be consulted for recommendations and details of such applications.1.4 The references are a part of this guide to the extent specified in the text.1.5 The values stated in metric (SI) units are to be regarded as the standard. The values given in parentheses are for informational purposes only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method determines the long-term ring-bending strain of pipe when deflected under constant load and immersed in a chemical environment. It has been found that effects of chemical environments can be accelerated by strain induced by deflection. This information is useful and necessary for the design and application of buried fiberglass pipe.NOTE 3: Pipe of the same diameter but of different wall thicknesses will develop different strains with the same deflection. Also, pipes having the same wall thickness but different constructions making up the wall may develop different strains with the same deflection.1.1 This test method covers a procedure for determining the long-term ring-bending strain (Sb) of “fiberglass” pipe. Both glass-fiber-reinforced thermosetting-resin pipe (RTRP) and glass-fiber-reinforced polymer mortar pipe (RPMP) are “fiberglass” pipes.1.2 The values stated in inch-pound units are to be regarded as the standard. The SI units given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. A specific warning statement is given in 9.5.NOTE 1: There is no known ISO equivalent to this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Creep tests measure the time-dependent deformation under force at a given temperature, and, by implication, the force-carrying capability of the material for limited deformations. Creep rupture tests, properly interpreted, provide a measure of the force-carrying capability of the material as a function of time and temperature. The two tests complement each other in defining the force-carrying capability of a material for a given period of time. In selecting materials and designing parts for service at elevated temperatures, the type of test data used will depend on the criteria for force-carrying capability that best defines the service usefulness of the material.4.2 This test method may be used for material development, quality assurance, characterization, and design data generation.4.3 High-strength, monolithic ceramic materials, generally characterized by small grain sizes (<50 μm) and bulk densities near their theoretical density, are candidates for load-bearing structural applications at elevated temperatures. These applications involve components such as turbine blades which are subjected to stress gradients and multiaxial stresses.4.4 Data obtained for design and predictive purposes shall be obtained using any appropriate combination of test methods that provide the most relevant information for the applications being considered. It is noted here that ceramic materials tend to creep more rapidly in tension than in compression (1-3).4 This difference results in time-dependent changes in the stress distribution and the position of the neutral axis when tests are conducted in flexure. As a consequence, deconvolution of flexural creep data to obtain the constitutive equations needed for design cannot be achieved without some degree of uncertainty concerning the form of the creep equations, and the magnitude of the creep rate in tension vis-a-vis the creep rate in compression. Therefore, creep data for design and life prediction shall be obtained in both tension and compression, as well as the expected service stress state.1.1 This test method covers the determination of tensile creep strain, creep strain rate, and creep time to failure for advanced monolithic ceramics at elevated temperatures, typically between 1073 and 2073 K. A variety of test specimen geometries are included. The creep strain at a fixed temperature is evaluated from direct measurements of the gage length extension over the time of the test. The minimum creep strain rate, which may be invariant with time, is evaluated as a function of temperature and applied stress. Creep time to failure is also included in this test method.1.2 This test method is for use with advanced ceramics that behave as macroscopically isotropic, homogeneous, continuous materials. While this test method is intended for use on monolithic ceramics, whisker- or particle-reinforced composite ceramics as well as low-volume-fraction discontinuous fiber-reinforced composite ceramics may also meet these macroscopic behavior assumptions. Continuous fiber-reinforced ceramic composites (CFCCs) do not behave as macroscopically isotropic, homogeneous, continuous materials, and application of this test method to these materials is not recommended.1.3 The values in SI units are to be regarded as the standard (see IEEE/ASTM SI 10). The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method can be used to determine the stress-strain properties of an adhesive in shear and to establish the proportional-limit of the stress-stain relationship. This data may be useful for the design and analysis of adhesively bonded joints.5.2 This test method is not intended to determine adhesion characteristics of an adhesive to a particular substrate; rather this test method is intended to characterize the adhesive shear stress-strain properties that may be relevant for design considerations.5.3 This test method has been developed and applied using bonded aluminum adherends. At this time no assumptions regarding the validity of this test method with non-aluminum adherends can be made.1.1 This test method covers the preparation and testing of thick-adherend lap-shear samples for the determination of the stress-strain behavior of adhesives.1.2 This test method covers data reduction and analysis of stress-strain curves obtained using thick-adherend lap-shear samples.1.3 The values stated in SI units are to be regarded as the standard. The inch-pound units in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in 7.3.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Multiaxial forces often tend to introduce deformation and damage mechanisms that are unique and quite different from those induced under a simple uniaxial loading condition. Since most engineering components are subjected to cyclic multiaxial forces it is necessary to characterize the deformation and fatigue behaviors of materials in this mode. Such a characterization enables reliable prediction of the fatigue lives of many engineering components. Axial-torsional loading is one of several possible types of multiaxial force systems and is essentially a biaxial type of loading. Thin-walled tubular specimens subjected to axial-torsional loading can be used to explore behavior of materials in two of the four quadrants in principal stress or strain spaces. Axial-torsional loading is more convenient than in-plane biaxial loading because the stress state in the thin-walled tubular specimens is constant over the entire test section and is well-known. This practice is useful for generating fatigue life and cyclic deformation data on homogeneous materials under axial, torsional, and combined in- and out-of-phase axial-torsional loading conditions.1.1 The standard deals with strain-controlled, axial, torsional, and combined in- and out-of-phase axial torsional fatigue testing with thin-walled, circular cross-section, tubular specimens at isothermal, ambient and elevated temperatures. This standard is limited to symmetric, completely-reversed strains (zero mean strains) and axial and torsional waveforms with the same frequency in combined axial-torsional fatigue testing. This standard is also limited to characterization of homogeneous materials with thin-walled tubular specimens and does not cover testing of either large-scale components or structural elements.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
50 条记录,每页 15 条,当前第 3 / 4 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页