5.1 Exposing a specimen to conditions of one-directional environmental cycling can increase its moisture content until a decrease in material properties occurs (at a specific number of cycles). Such a test could be inappropriate due to the number of cycles required to cause a decrease in material properties since product performance issues often arise only after many years of exposure. The use of a preconditioning procedure is not intended to duplicate expected field performance. Rather the purpose is to increase the moisture content of test materials prior to subjecting to them to environmental cycling.5.2 The most important aspect of the preconditioning procedure is non-uniform moisture distribution in the specimen. The heat flow is one directional causing moisture flow towards the cold side resulting in zones of dry material on the warm side and high moisture content on the cold side. (Whether the high moisture content zone is located right at the cold surface of the specimen or at some distance from this surface depends upon temperature oscillation and ability of the cold surface to dry outwards). Because the preconditioning procedure involves thermal gradient, this preconditioning procedure results in a distribution of moisture content that may occur under field exposure conditions. However, the resulting moisture content may differ significantly from that which may be demonstrated in typical product applications.5.3 The preconditioning results in accumulation of moisture in the thermal insulation resulting from the simultaneous exposure to a difference in temperature and water vapor pressure. This test method is not intended to duplicate field exposure. It is intended to provide comparative ratings. As excessive accumulation of moisture in a construction system may adversely affect its performance, the designer should consider the potential for moisture accumulation and the possible effects of this moisture on the system performance.1.1 This test method is applicable to preformed or field manufactured thermal insulation products, such as board stock foams, rigid fibrous and composite materials manufactured with or without protective facings. See Note 1. This test method is not applicable to high temperature, reflective or loose fill insulation.NOTE 1: If the product is manufactured with a facer, test product with facer in place.1.2 This test method involves two stages: preconditioning and environmental cycling. During the first stage, 25 mm (1 in.) thick specimens are used to separate two environments. Each of these environments has a constant but different temperature and humidity level. During the environmental cycling stage, specimens also divide two environments namely constant room temperature/humidity on one side and cycling temperature/ambient relative humidity on the other side.1.3 This test method measures the ability of the product to maintain thermal performance and critical physical attributes after being subjected to standardized exposure conditions. A comparison is made between material properties for reference specimens stored in the laboratory for the test period and specimens subjected to the two-stage test method. To eliminate the effect of moisture from the comparison, the material properties of the latter test specimens are determined after they have been dried to constant weight. The average value determined for each of the two sets of specimens is used for comparison.1.4 Different properties can be measured to assess the effect of environmental factors on thermal insulation. This test method requires that thermal resistance be determined based upon an average for three specimens measured after completing the test. Secondary elements of this test method include visual observations such as cracking, delamination or other surface defects, as well as the change in moisture content after each of the two stages of exposure prescribed by the test method.1.5 Characterization of the tested material is an essential element of this test method. Material properties used for characterization will include either compressive resistance or tensile strength values. The compressive resistance or tensile strength is measured on two sets of specimens, one set conditioned as defined in 1.2 and a set of reference test specimens taken from the same material batch and stored in the laboratory for the whole test period. For comparison, an average value is determined for each of the two sets of specimens.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 The first reported synthesis of BPA was by the reaction of phenol with acetone by Zincke.4 BPA has become an important high volume industrial chemical used in the manufacture of polycarbonate plastic and epoxy resins. Polycarbonate plastic and resins are used in numerous products including electrical and electronic equipment, automobiles, sports and safety equipment, reusable food and drink containers, electrical laminates for printed circuit boards, composites, paints, adhesives, dental sealants, protective coatings and many other products.55.2 The environmental source of BPA is predominantly from the decomposition of polycarbonate plastics and resins. BPA is not classified as bio-accumulative by the U.S. Environmental Protection Agency and will biodegrade. BPA has been reported to have adverse effects in aquatic organisms and may be released into environmental waters directly at trace levels through landfill leachate and POTW effluents. This method has been investigated for use with surface water and secondary and tertiary POTW effluent samples therefore, it is applicable to these matrices only. It has not been investigated for use with salt water or solid sample matrices.1.1 This test method covers the determination of bisphenol A (BPA) extracted from water utilizing solid phase extraction (SPE), separated using liquid chromatography (LC) and detected with tandem mass spectrometry (MS/MS). BPA is qualitatively and quantitatively determined by this method. This test method adheres to multiple reaction monitoring (MRM) mass spectrometry.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The method detection limit (MDL) and reporting limit (RL) for BPA are listed in Table 1.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This practice may be used to determine the effectiveness of liquid, aerosols/foams, and trigger-spray products against designated prototype viruses.5.2 The number of lots of the test substance and the number of replicates in each test will depend on the requirements of the target regulatory agency.5.3 Certain regulatory agencies may require additional testing using other carrier tests for product registration purposes.1.1 This practice is used to evaluate the virucidal efficacy of liquid, aerosol, or trigger-spray microbicides intended for use on inanimate, nonporous environmental surfaces. This practice may be employed with most viruses, which can be grown in cultured cells.2 However, other host systems (for example, embryonic eggs) may be used with proper justification and documentation.1.2 This practice should be performed only by those trained in microbiological and virological techniques in facilities designed and equipped for work with infectious agents at the appropriate biosafety level.1.3 It is the responsibility of the investigator to determine whether Good Laboratory Practice regulations (GLPs) are required and to follow them where appropriate (40 CFR, Part 160 for EPA submissions and 21 CFR, Part 58 for FDA submissions). Refer to the appropriate regulatory agency for performance standards of virucidal efficacy.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The user should consult a reference for laboratory safety recommendations.21.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 The 1998 edition of this standard was written solely for selection of drilling methods for environmental applications and specifically for installation of groundwater monitoring wells. The second revision was made to include geotechnical applications since many of the advantages, disadvantages, and limitations discussed extensively throughout this document also apply to geotechnical design use such as data collection (sampling and in-situ testing) for construction design and instrumentation. Besides installation of monitoring wells (D5092/D5092M, D6724/D6724M), Environmental investigations are also made for sampling, in-situ testing, and installation of aquifer testing boreholes (D4044/D4044M, D4050).4.2 There are other guides for geotechnical investigations addressing drilling methods such as in Eurocode (1, 2)5, U.S. Federal Highway Administration, (3, 4), U.S. Army Corps of Engineers, (5), and U.S. Bureau of Reclamation (6, 7). An authoritative Handbook on Environmental Site Characterization and Ground-Water Monitoring was compiled by Nielsen (8) which addresses drilling methods in detail including the advent of Direct Push methods developed for environmental investigations. Two other major drilling guides have been written by the National Drilling Association (9) and from the Australia Drilling Industry Training Committee (10) and these guides are user for the drillers.4.3 Table 1 lists sixteen classes of methods addressed in this guide. The selection of particular method(s) for drilling/push boring requires that specific characteristics of each site be considered. This guide is intended to make the user aware of some of the various drilling/push boring methods available and the applications, advantages, and disadvantages of each with respect to determining geotechnical and environmental exploration.(A) Actual achievable drilled depths will vary depending on the ambient geohydrologic conditions existing at the site and size of drilling/push boring equipment used. For example, large, high-torque rigs can drill to greater depths than their smaller counterparts under favorable site conditions. Boreholes drilled using air/air foam can reach greater depths more efficiently using two-stage positive-displacement compressors having the capability of developing working pressures of 12 to 17 kPa [250 to 350 psi] and 14 to 21 m3/h [500 to 750 cfm], particularly when submergence requires higher pressures. The smaller rotary-type compressors only are capable of producing a maximum working pressure of 6 kPa [125 psi] and produce 14 to 34 m3/h [500 to 1200 cfm]. Likewise, the rig mast must be constructed to safely carry the anticipated working loads expected. To allow for contingencies, it is recommended that the rated capacity of the mast be at least twice the anticipated weight load or normal pulling load.(B) Soil = S (Cuttings), Rock = R (Cuttings), Fluid = F (some samples might require accessory sampling devices to obtain).(C) I = Incremental sampling, C = continuous sampling.4.3.1 On Table 1, practically all methods allow for coring, but some are much more efficient than others. Some drilling systems such as hollow-stem augers or wireline coring allow for practically continuous coring with minimal time for switching barrels while other drilling methods require the whole drilling equipment be removed from the hole. A prime example is the rate of rock coring using fluid rotary and conventional core barrels versus wireline rock coring. Wireline line rock coring is fast with long continuous runs whereas fluid rotary requires more “trip time” to add and remove shorter length core barrels using drill rods. Table 1 delineates methods where coring is possible, and in general, by either continuous (c) or incremental (i) sampling.4.3.2 Sampling for environmental contaminants in soil, unconsolidated formations or groundwater often requires special considerations. In many environmental applications the use of drilling fluids (air, water, mud or foam) is often discouraged or even prohibited as these fluids may dilute the analytes of interest or even introduce analytes of concern not previously present (see 5.4).4.4 This guide is most often used in conjunction with Guide D6169/D6169M on soil and rock sampling because sampling is the primary activity during drilling/push borings. There are several guides that deal with individual drilling methods (see Guides D5781/D5781M, D5782, D5783, D5784, D5872, D5875/D5875M, and D5876/D5876M) and how to the complete them for water quality monitoring well installations (see Practice D5092/D5092M). Practices on hollow-stem auger (D6151/D6151M) and sonic drilling (D6914/D6914M) were written for both geotechnical and environmental purposes and address sampling methods. Practice D2113 on rock core drilling includes sampling methods.4.4.1 This guide covers direct push methods that are only used to make open holes for testing and sampling. This most often accomplished using dual tube systems and using the tubes for access of the subsurface for water sampling, D6001, soil sampling (D6282/D6282M), well installation (D6724/D6724M, D6725/D6725M) and aquifer testing (D7242/D7242M).4.5 Predominant or Typical Drilling/Push Boring Methods Used for Geotechnical and Environmental Applications: 4.5.1 Geotechnical Investigations in Soils (unconsolidated deposits)—The most commonly used drilling methods for geotechnical exploration are fluid rotary drilling when groundwater is present. Hollow-stem auger drilling is also frequently used especially in arid regions where introduction of fluids is to be avoided in unsaturated soils.4.5.2 Environmental Investigations in soils (unconsolidated deposits)—Most of these investigations are focused on soil contamination or, groundwater quality investigations so introduction of drilling fluids is not desirable and methods which generate minimal waste are highly favored. Direct Push methods were developed because they develop minimal investigative derived waste (IDW). Sonic methods are frequently used and generate minimal IDW but large cores. Hollow-stem augers and fluid rotary are used yet they generate large amounts of IDW.4.5.2.1 At most environmental sites hazardous contaminants are present in the subsurface. Because of this fact any drill cuttings or drilling fluids returned to the surface should be properly handled, contained and stored (drums or roll-off bins, etc.) for sampling and laboratory analysis. Laboratory analyses may be required to verify that hazardous contaminants are not present above regulatory action levels prior to proper disposal. If concentrations of hazardous chemicals in cuttings or waste drilling fluids exceed regulatory action levels the waste may require treatment before disposal or may need to be properly disposed in a hazardous waste landfill. Review pertinent regulations before drilling/push boring to maintain compliance. The generation of contaminated waste drill cuttings and fluids significantly increase the potential for worker exposure to hazardous contaminants. Review pertinent regulations (such as OSHA 1910.120, etc.) to maintain compliance with worker safety and monitoring requirements.4.5.3 Rock, Weathered Rock, and Coarse Cobble Boulder Drilling—Wireline rock coring is used in competent rock and results in the best core recovery. For coarse grained unconsolidated deposits and weathered bedrock samples are very difficult to recover and, rotary air drill through drive casing advancers are often used and require larger drills. Larger sonic drills can also drill and recover rock and boulder formations.4.5.4 Sonic drilling methods have increased in use for both geotechnical and environmental explorations. The method offers very rapid continuous coring with the ability to drill difficult formations with large diameter equipment.4.5.5 Shallow hand auger (D4700) is used for both disciplines but in most cases hand applications are used as part of initial site surveys prior to drilling/push boring or just for characterization of shallow soil sampling. Hand auguring is very labor intensive and has almost been abandoned in favor of using direct push equipment.NOTE 1: The reliability of data and interpretations generated by this practice is dependent on the competence of the personnel performing it and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740 generally are considered capable of competent testing. Users of this practice are cautioned that compliance with Practice D3740 does not assure reliable testing. Reliable testing depends on several factors and Practice D3740 provides a means of evaluating some of these factors.Practice D3740 was developed for agencies engaged in the testing, inspection, or both, of soils and rock. As such, it is not totally applicable to agencies performing these field practices. Users of this test method should recognize that the framework of Practice D3740 is appropriate for evaluating the quality of an agency performing drilling. Currently, there is no known qualifying national authority that inspects agencies that perform this test method. There is training and certification for drillers that are normally required for critical installations such as water well drilling (NGWA, NDA).1.1 This guide provides descriptions of various methods for site characterization along with advantages and disadvantages associated with each method discussed. This guide is intended to aid in the selection of drilling method(s) for geotechnical and environmental soil and rock borings for sampling, testing, and installation of wells, or other instrumentation. It does not address drilling for foundation improvement, drinking water wells, or special horizontal drilling techniques for utilities.1.2 This guide cannot address all possible subsurface conditions that may occur such as, geologic, topographic, climatic, or anthropogenic. Site evaluation for engineering, design, and construction purposes is addressed in Guide D420. Soil and rock sampling in drill holes is addressed in Guide D6169/D6169M. Pertinent guides and practices addressing specific drilling methods, equipment, and procedures are listed in Section 2. Guide D5730 provides information on most all aspects of environmental site characterization.1.3 The values stated in either SI units or inch-pound units (given in brackets) are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.4 This guide does not purport to comprehensively address all methods and the issues associated with drilling for geotechnical and environmental purposes. Users should seek qualified professionals for decisions as to the proper equipment and methods that would be most successful for their site investigation. Other methods may be available for these methods and qualified professionals should have flexibility to exercise judgment as to possible alternatives not covered in this guide. The guide is current at the time of issue, but new alternative methods may become available prior to revisions. Therefore, users should consult with manufacturers or producers prior to specifying program requirements.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5.1 Drilling operators generally are required to be trained for safety requirements such as those of construction and environmental occupational safety programs dictated by country, regional, or local requirements such as the US. OSHA training programs. Drilling safety programs are also available from the National Drilling Association (NDA4U.com) or other country drilling associations.21.6 This guide offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education and experience and should be used in conjunction with professional judgment. Not all aspects of this guide may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 843元 加购物车
5.1 Dimensional measurements, properly interpreted, provide information with regard to the conductors, insulation, or jacket. The dimensional measurements provide data for research and development, engineering design, quality control, and acceptance or rejection under specifications.1.1 These test methods cover procedures for the physical testing of thermoplastic insulations and jackets used on telecommunications wire and cable and the testing of physical characteristics and environmental performance properties of completed products. To determine the procedure to be used on the particular insulation or jacket or on the completed wire or cable, make reference to the specification for that product.1.2 These test methods appear in the following sections of this standard:Test Method Section(s)Dimensional Measurements of Insulations, Jackets, Miscellaneous Cable Components, and of Completed Cable 4 – 9 Cross-sectional Areas 9 Diameters 6 Eccentricity 8 Thickness 7Physical and Environmental Tests of Insulation and Jackets 10 – 25 Aging Test (Jackets Only) 24 Cold Bend (Insulation Only) 16 Environmental Stress Crack (Polyolefin Jackets Only) 21 Heat Distortion (Jackets Only) 22 Heat Shock (Jackets Only) 23 Insulation Adhesion 19 Insulation and Jacket Shrinkback (Oven Test) 14 Insulation Compression 20 Insulation Shrinkback (Solder Test) 15 Melt Flow Rate Change—Polyolefin Materials 12 Oil Immersion Test (Jackets Only) 25 Oxygen Induction Time (Polyolefin Insulation Only) 17 Oxygen Induction Time (Cable Filling Compound Only) 18 Tensile and Elongation Tests 13Physical and Environmental Tests of Insulations and Jackets of Completed Wire and Cable 26 – 42 Cable Torsion Test 38 Compound Flow Test (Filled Core Wire and Cable Only) 42 Corrugation Extensibility Test 36 Cable Impact Test 33 Jacket Bonding Tests 29 Jacket Notch Test 32 Jacket Peel or Pull 28 Jacket Slip Strength Test 30Procedure Section(s) Pressure Test (Air Core Wire and Cable Only) 40 Sheath Adherence Test 31 Water Penetration Test (Filled Core Wire and Cable Only) 41 Wire and Cable Bending Test 34 Wire breaking strength 371.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard, except where only SI units are given.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statement see 19.1.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
4.1 This guide provides methods for developing environmental sustainability KPIs at the manufacturing process level.4.2 This guide provides standard approaches for systematically identifying, defining, selecting, and organizing KPIs for determining the impact of manufacturing processes on the environment.4.3 This guide is intended for those who need effective KPIs to assess manufacturing process performance, raise understanding, inform decision-makers, and establish objectives for improvement.4.4 If the number of stakeholders is small and the manufacturing processes are simple, KPI developers can follow the first two steps (5.2 Establishing KPI Objectives and 5.3 Defining needed KPIs) of this guide. The steps that follow include KPI selection, normalization and weighting, and KPI organization. They can be applied to larger groups of stakeholders and more complex manufacturing processes. Users of this guide can determine the number of steps they will follow because the decision is highly dependent upon the products that they make and the processes that they use.4.5 The guide enables the development of tools for KPI management and performance evaluation that will support decision-making capabilities in a manufacturing facility, including the development and extension of standardized data, performance information, and environmental knowledge.4.6 Procedures outlined in this guide are intended for environmental KPIs, and they also can be applied to broader sustainability KPIs as in Guide E2986.4.7 A quick guide on how to use this guide can be found in Appendix X7.1.1 This guide addresses Key Performance Indicators (KPIs) for environmental aspects of manufacturing processes.1.2 This guide provides a procedure for identifying candidate KPIs from existing sources for environmental aspects of manufacturing processes.1.3 This guide provides a procedure for defining new candidate KPIs that are not available from existing sources for environmental aspects of manufacturing processes.1.4 This guide defines a methodology for selecting effective KPIs from a list of candidate KPIs based on KPI criteria selected from Appendix X3 or defined by users.1.5 This guide provides a procedure for normalizing KPIs, assigning weights to those KPIs, and aligning them to environmental objectives.1.6 KPIs of Manufacturing Operation Management activities as defined in IEC 62264-1 are out of the scope since they are specifically addressed in ISO 22400-2.1.7 How to evaluate environmental impacts is out of the scope since it is addressed in Guide E2986.1.8 This guide can be used to complement other standards that address environmental aspects of manufacturing processes, for example, Guide E2986, Terminology E2987/E2987M, and Guide E3012.1.9 This guide does not purport to address the security risks associated with manufacturing and environmental information. It is the responsibility of the user of this standard to follow practices and establish appropriate information technology related security measures.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车