微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

This specification covers requirements for fuel grade methyl tertiary-butyl ether utilized in commerce, terminal blending, or downstream blending with fuels for spark-ignition engines. The following test methods shall be conducted to meet the specified requirements: appearance; sulfur; solvent-washed gum content; MTBE mass percentage; methanol mass percentage; API gravity; density; copper strip corrosion; water content; vapor pressure; and color.1.1 This specification covers requirements for fuel grade methyl tertiary-butyl ether utilized in blending with gasolines at 1 % to 15 % by volume (equivalent to 2.7 % by weight oxygen) for use as automotive spark-ignition engine fuel covered by Specification D4814 as well as other automotive fuel applications involving MTBE. Other MTBE grades may be available for blending that are not covered by this specification.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 The ID and DCN values determined by this test method can provide a measure of the ignition characteristics of diesel fuel oil in compression ignition engines.5.2 This test can be used in commerce as a specification aid to relate or match fuels and engines. It can also be useful in research or when there is interest in the ignition delay of a diesel fuel under the conditions of this test method.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test may be applied to non-conventional fuels. It is recognized that the performance of non-conventional fuels in full-scale engines is not completely understood. The user is therefore cautioned to investigate the suitability of ignition characteristic measurements for predicting performance in full-scale engines for these types of fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 100 mL and a test time of approximately 20 min on a fit-for-use instrument.1.1 This automated laboratory test method covers the quantitative determination of the ignition characteristics of conventional diesel fuel oil, oil-sands based fuels, hydrocarbon oils, blends of fuel containing biodiesel material, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of ASTM Specification D975 grades No. 1-D S15, No. 1-D S500, and No. 1-D S5000, and grades No. 2-D S15, No. 2-D S500, and No. 2-D S5000 diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517 and 3.520. The test method may also be applied to the quantitative determination of the ignition characteristics of diesel fuel blending components.1.2 This test method measures the ignition delay of a diesel fuel injected directly into a constant volume combustion chamber containing heated, compressed air. An equation correlates an ignition delay determination to cetane number by Test Method D613, resulting in a derived cetane number (DCN).1.3 This test method covers the ignition delay range from 2.64 ms to 6.90 ms (75.1 DCN to 31.5 DCN). The combustion analyzer can measure shorter and longer ignition delays, but precision may be affected. For these shorter or longer ignition delays the correlation equation for DCN is given in Appendix X2.1.4 For purposes of determining conformance with the parameters of this test method, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the parameter, in accordance with the rounding method of Practice E29.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 Catalyst fines in fuel oils can cause abnormal engine wear. These test methods provide a means of determining silicon and aluminum, the major constituents of the catalysts.1.1 These test methods cover the determination of aluminum and silicon in fuel oils at concentrations between 5 mg/kg and 150 mg/kg for aluminum and 10 mg/kg and 250 mg/kg for silicon.1.2 Test Method A—Inductively coupled plasma atomic emission spectrometry is used in this test method to quantitatively determine aluminum and silicon.1.3 Test Method B—Flame atomic absorption spectrometry is used in this test method to quantitatively determine aluminum and silicon.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Sections 7.6, 10.1, and 11.5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Nuclear-grade reactor fuel material must meet certain criteria, such as those described in Specifications C753, C776, C778, and C833. Included in these criteria is the uranium isotopic composition. This test method is designed to demonstrate whether or not a given material meets an isotopic requirement and whether the effective fissile content is in compliance with the purchaser's specifications. 1.1 This test method is applicable to the determination of the isotopic composition of uranium (U) in nuclear-grade fuel material. The following isotopic weight percentages are determined using a quadrupole inductively coupled plasma-mass spectrometer (Q-ICP-MS): 233U, 234U, 235U, 236U, and 238U. The analysis can be performed on various material matrices after acid dissolution and sample dilution into water or dilute nitric (HNO3) acid. These materials include: fuel product, uranium oxide, uranium oxide alloys, uranyl nitrate (UNH) crystals, and solutions. The sample preparation discussed in this test method focuses on fuel product material but may be used for uranium oxide or a uranium oxide alloy. Other preparation techniques may be used and some references are given. Purification of the uranium by anion-exchange extraction is not required for this test method, as it is required by other test methods such as radiochemistry and thermal ionization mass spectroscopy (TIMS). This test method is also described in ASTM STP 13442. 1.2 The 233U isotope is primarily measured as a qualitative measure of its presence by comparing the 233U peak intensity to a background point since it is not normally found present in materials. The example data presented in this test method do not contain any 233U data. A 233U enriched standard is given in Section 8, and it may be used as a quantitative spike addition to the other standard materials listed. 1.3 A single standard calibration technique is used. Optimal accuracy (or a low bias) is achieved through the use of a single standard that is closely matched to the enrichment of the samples. The intensity or concentration is also adjusted to within a certain tolerance range to provide good statistical counting precision for the low-abundance isotopes while maintaining a low bias for the high-abundance isotopes, resulting from high-intensity dead time effects. No blank subtraction or background correction is utilized. Depending upon the standards chosen, enrichments between depleted and 97 % can be quantified. The calibration and measurements are made by measuring the intensity ratios of each low-abundance isotope to the intensity sum of 233U, 234U, 235U, 236U, and 238U. The high-abundance isotope is obtained by difference. 1.4 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only. The instrument is calibrated and the samples measured in units of isotopic weight percent (Wt %). For example, the 235U enrichment may be stated as Wt % 235U or as g 235U/100 g of U. Statements regarding dilutions, particularly for μg/g concentrations or lower, are given assuming a solution density of 1.0 since the uranium concentration of a solution is not important when making isotopic ratio measurements other than to maintain a reasonably consistent intensity within a tolerance range. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 9. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This procedure describes a rapid and sensitive method for estimating the stability reserve of an oil. The stability reserve is estimated in terms of a separability number, where a low value of the separability number indicates that there is a stability reserve within the oil. When the separability number is between 0 to 5, the oil can be considered to have a high stability reserve and asphaltenes are not likely to flocculate. If the separability number is between 5 to 10, the stability reserve in the oil will be much lower. However, asphaltenes are, in this case, not likely to flocculate as long as the oil is not exposed to any worse conditions, such as storing, aging, and heating. If the separability number is above 10, the stability reserve of the oil is very low and asphaltenes will easily flocculate, or have already started to flocculate.5.2 This test method can be used by refiners and users of heavy oils, for which this test method is applicable, to estimate the stability reserves of their oils. Hence, this test method can be used by refineries to control and optimize their refinery processes. Consumers of oils can use this test method to estimate the stability reserve of their oils before, during, and after storage.5.3 This test method is not intended for predicting whether oils are compatible before mixing, but can be used for determining the separability number of already blended oils. However, experience shows that oils exhibiting a low separability number are more likely to be compatible with other oils than are oils with high separability numbers.1.1 This test method covers the quantitative measurement, either in the laboratory or in the field, of how easily asphaltene-containing heavy fuel oils diluted in toluene phase separate upon addition of heptane. The result is a separability number (%). See also Test Method D7061.1.2 The test method is limited to asphaltene-containing heavy fuel oils. ASTM specification fuels that generally fall within the scope of this test method are Specification D396, Grade Nos. 4, 5, and 6, Specification D975, Grade No. 4-D, and Specification D2880, Grade Nos. 3-GT and 4-GT. Refinery fractions from which such blended fuels are made also fall within the scope of this test method.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 702 加购物车

在线阅读 收 藏

5.1 Biodiesel is a fuel commodity primarily used as a blending component with diesel fuel. It is important to check the concentration of biodiesel in the diesel fuel in order to verify it is within limits or does not exceed the maximum allowable limit.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends.5.3 This test is simple to run, completed in less than one minute, with no dilution of the test sample, no cleaning solvents are required, and the analyzer is portable and self-contained.1.1 This test method covers the determination of the content of biodiesel (fatty acid methyl esters (FAME)) in diesel fuel oils for volume fractions of 0.1 % to 31.0 % by mid-infrared analyzer with a resolution of 0.1 %.NOTE 1: ASTM and ISO specification fuels falling within the scope of this test method include Specifications: D975 grades No. 1D and No. 2D, D7467, distillate grades of D396, MIL-DTL-16884, and distillate grades of marine fuel specification ISO 8217.1.2 The accuracy of this test method is based on the molecular weight of C16 and C18 FAME species.1.2.1 Discussion—Biodiesel contains a variety of species with different molecular weights. Typical market FAMEs from North America and Europe, which are predominantly soy, rapeseed, and used cooking oil derived FAME were included in the pilot study. FAME derived from coconut, which predominantly contains C12, will over-read by approximately 30 %.1.3 This method cannot distinguish between vegetable oils, animal fats, FAEE, compounds containing carbonyl groups, and FAME. For more information, see Section 6.1.4 This test method has interim repeatability precision only, see Section 14 for more information.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers the methanol fuel blend, M70-M85, for use in ground vehicles that run on automotive spark-ignition engines. Fuels are grouped into three vapor pressure classes (Classes 1, 2, and 3) on the basis of seasonal and geographical volatility. The fuel blends shall undergo chemical analysis for methanol, higher alcohols, hydrocarbon/aliphatic ether, acidity as acetic acid, solvent washed and unwashed gum content, total chlorine as chloride, lead, phosphorus, water, sulfur, and inorganic chloride. The product's appearance shall be clear and bright, visibly free of suspended or precipitated contaminants.1.1 This specification covers the requirements for automotive fuel blends of methanol and gasoline for use in ground vehicles equipped with methanol-capable flexible-fuel, and dedicated methanol spark-ignition engines. Fuel produced to this specification contains 51 % to 85 % by volume methanol. This fuel is sometimes referred to at retail as “M85.” Appendix X1 discusses the significance of the properties specified. Appendix X2 presents the current status in the development of a luminosity test procedure (flame visibility) for methanol fuel blends (M51–M85).1.2 The vapor pressure of methanol fuel blends is varied for seasonal climatic changes. Vapor pressure is increased at lower temperatures to ensure adequate vehicle operability and safety. Methanol content and selection of gasoline blendstocks are adjusted by the blender to meet these vapor pressure requirements.1.3 The United States government has established various programs for alternative fuels. Many of the definitions of alternative fuel used by these programs can be more or less restrictive than the requirements of this specification. See Annex A1 for additional information on alternative fuels containing methanol.1.4 The values stated in SI units are to be regarded as the standard.1.4.1 Exception—Non-SI units are provided for information only. In most cases, U.S. federal regulations specify non-SI units.1.5 The following precautionary caveat pertains only to the test method portions–Appendix X2 of this specification. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The present and growing international governmental requirements to add FAME (biodiesel, as specified in standards such as Specification D6751 and EN 14214) to diesel fuel has had the side effect of leading to potential FAME contamination of jet turbine fuel in multifuel transport facilities such as cargo tankers and pipelines. FAME has been added as an identified incident material to Table 3 of Specification D1655 in which a permitted level of contamination is specified.5.2 This test method has been developed for use in the supply chain by nonspecialized personnel to detect all kinds of FAME covering the range of 10 mg/kg to 400 mg/kg.NOTE 3: This test method can be used to screen for unconverted esters from lipid co-hydroprocessed hydrocarbon synthetic kerosene in aviation turbine fuel. This application is detailed in X1.2.1.1 This test method covers the quantification of the fatty acid methyl esters (FAME) content in aviation turbine fuel in the range of 10 mg/kg to 400 mg/kg by measuring infrared (IR) transmission before, during, and after FAME is converted to molecules that absorb in a different spectral region than FAME using a selective chemical reaction facilitated by a suitable catalyst.NOTE 1: This test method detects all FAME components with peak IR absorbance at approximately 1749 cm-1 and C8 to C22 carbon chain length. The accuracy of this test method is based on the molecular weight of C16 to C18 FAME species. The presence of other FAME species with different molecular weights could affect the accuracy.NOTE 2: Additives such as antistatic agents, antioxidants, and corrosion inhibitors are measured with the FAME by mid IR absorption. However, these additives do not contribute to the differential absorption spectrum used to quantify FAME, as they do not take part in the selective reaction.1.2 This test method has interim repeatability precision only, see Section 15 for more information.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 8.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 The storage of nuclear fuel in high-density storage racks is dependent upon the functionality and integrity of an absorber between the stored fuel assemblies to ensure that the reactivity of the storage configuration does not exceed the K-effective allowed by applicable regulations. A confirmation test may be required to verify the functionality and integrity of the absorber within the racks. If establishing a surveillance program for newly installed or existing absorber material in fuel racks, the following methods are suggested: (a) coupon monitoring program (if coupons are available), (b) in-situ neutron attenuation test, and (c) other applicable in-situ tests such as visual inspection or drag test.4.2 This guide provides guidance for establishing and conducting a surveillance program for monitoring the ongoing functionality and integrity of the absorbers.1.1 This guide provides guidance for establishing a surveillance test program to monitor the performance of boron-based neutron absorbing material systems (absorbers) necessary to maintain sub-criticality in nuclear fuel storage racks in a pool environment. The practices presented in this guide, when implemented, will provide a comprehensive surveillance test program to verify the functionality and integrity of the neutron absorbing material within the storage racks. The performance of a surveillance test program provides added assurance of the safe and effective operation of a high-density storage facility for nuclear fuel. There are several different techniques for surveillance testing of boron-based neutron absorbing materials. This guide focuses on coupon monitoring and in-situ testing.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 This test method will allow the determination of static dissipater additive in jet and middle distillate. These additives reduce the hazardous effects of static electricity generated by transfer and movement of jet and middle distillate fuels.1.1 This test method covers the determination of static dissipater additive (SDA) content of aviation turbine fuel and middle distillate fuels.1.2 The precision of this test method has been established for aviation turbine fuel over the concentration range of 1 mg/L to 12 mg/L. Higher concentrations can be determined by dilution, but the precision of the test method will not apply.NOTE 1: The SDA used to develop this test method was STADIS 4502 for aviation fuels and STADIS 450 and 4252 for middle distillates.1.3 The test method includes a procedure to concentrate the sulfonic acid component in the SDA prior to analysis.1.4 The test method only applies to SDAs that contain alkyl substituted sulfonic acid.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIE test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi-viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Specific Fuel Consumption (BSFC) is measured in kilogram per kilowatt hour.1.3 This test method is arranged as follows:Subject SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow Meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Thermostat Block-Off Plate 6.13.5Oil Filter Adapter Plate 6.13.6Modified Throttle Body Assembly 6.13.7Fuel Rail 6.13.8Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.2Engine Assembly Procedure 9.3General Assembly Instructions 9.3.1Bolt Torque Specifications 9.3.2Sealing Compounds 9.3.3Harmonic Balancer 9.3.5Thermostat 9.3.6Coolant Inlet 9.3.7Oil Filter Adapter 9.3.8Dipstick Tube 9.3.9Sensors, Switches, Valves, and Positioners 9.3.10Ignition System 9.3.11Fuel Injection System 9.3.12Intake Air System 9.3.13Engine Management System 9.3.14Accessory Drive Units 9.3.15Exhaust Manifolds 9.3.16Engine Flywheel and Guards 9.3.17Lifting of Assembled Engines 9.3.18Engine Mounts 9.3.19Non-Phased Camshaft Gears 9.3.20Internal Coolant Orifice 9.3.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil Run 2 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIE Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level and Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Procedure  Procurement of Test Materials Annex A18Alternate Fuel Approval Requirements Annex A19Appendix  Useful Information Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 983 加购物车

在线阅读 收 藏
713 条记录,每页 15 条,当前第 23 / 48 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页