微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Test Method—The data obtained from the use of this test method provide a comparative index of the fuel-saving capabilities of automotive engine oils under repeatable laboratory conditions. A BL has been established for this test to provide a standard against which all other oils can be compared. The BL oil is an SAE 20W-30 grade fully formulated lubricant. The test procedure was not designed to give a precise estimate of the difference between two test oils without adequate replication. The test method was developed to compare the test oil to the BL oil. Companion test methods used to evaluate engine oil performance for specification requirements are discussed in the latest revision of Specification D4485.5.2 Use—The Sequence VIF test method is useful for engine oil fuel economy specification acceptance. It is used in specifications and classifications of engine lubricating oils, such as the following:5.2.1 Specification D4485.5.2.2 API 1509.5.2.3 SAE Classification J304.5.2.4 SAE Classification J1423.1.1 This test method covers an engine test procedure for the measurement of the effects of automotive engine oils on the fuel economy of passenger cars and light-duty trucks with gross vehicle weight 3856 kg or less. The tests are conducted using a specified spark-ignition engine with a displacement of 3.6 L (General Motors)4 on a dynamometer test stand. It applies to multi viscosity oils used in these applications.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.2.1 Exceptions—Where there is no direct equivalent such as the units for screw threads, National Pipe threads/diameters, tubing size, and single source supply equipment specifications. Additionally, Brake Fuel Consumption (BSFC) is measured in kilograms per kilowatt-hour.1.3 This test method is arranged as follows:  SectionIntroduction   1Referenced Documents 2Terminology 3Summary of Test Method 4Significance and Use 5Apparatus 6General 6.1Test Engine Configuration 6.2Laboratory Ambient Conditions 6.3Engine Speed and Torque Control 6.4Dynamometer 6.4.1Dynamometer Torque 6.4.2Engine Cooling System 6.5External Oil System 6.6Fuel System 6.7Fuel Flow Measurement 6.7.2Fuel Temperature and Pressure Control to the Fuel Flow Meter 6.7.3Fuel Temperature and Pressure Control to Engine Fuel Rail 6.7.4Fuel Supply Pumps 6.7.5Fuel Filtering 6.7.6Engine Intake Air Supply 6.8Intake Air Humidity 6.8.1Intake Air Filtration 6.8.2Intake Air Pressure Relief 6.8.3Temperature Measurement 6.9Thermocouple Location 6.9.5AFR Determination 6.10Exhaust and Exhaust Back Pressure Systems 6.11Exhaust Manifolds 6.11.1Laboratory Exhaust System 6.11.2Exhaust Back Pressure 6.11.3Pressure Measurement and Pressure Sensor Locations 6.12Engine Oil 6.12.2Fuel to Fuel Flow meter 6.12.3Fuel to Engine Fuel Rail 6.12.4Exhaust Back Pressure 6.12.5Intake Air 6.12.6Intake Manifold Vacuum/Absolute Pressure 6.12.7Coolant Flow Differential Pressure 6.12.8Crankcase Pressure 6.12.9Engine Hardware and Related Apparatus 6.13Test Engine Configuration 6.13.1ECU (Power Control Module) 6.13.2Thermostat Block-Off Adapter Plate 6.13.3Wiring Harness 6.13.4Oil Pan 6.13.5Engine Water Pump Adapter Plate 6.13.6Thermostat Block-Off Plate 6.13.7Oil Filter Adapter Plate 6.13.8Modified Throttle Body Assembly 6.13.9Fuel Rail 6.13.10Miscellaneous Apparatus Related to Engine Operation 6.14Reagents and Materials 7Engine Oil 7.1Test Fuel 7.2Engine Coolant 7.3Cleaning Materials 7.4Preparation of Apparatus 8Test Stand Preparation 8.2Engine Preparation 9Cleaning of Engine Parts 9.3Engine Assembly Procedure 9.4General Assembly Instructions 9.4.1Bolt Torque Specifications 9.4.2Sealing Compounds 9.4.3Harmonic Balancer 9.4.5Thermostat 9.4.6Coolant Inlet 9.4.7Oil Filter Adapter 9.4.8Dipstick Tube 9.4.9Sensors, Switches, Valves, and Positioner’s 9.4.10Ignition System 9.4.11Fuel Injection System 9.4.12Intake Air System 9.4.13Engine Management System 9.4.14Accessory Drive Units 9.4.15Exhaust Manifolds 9.4.16Engine Flywheel and Guards 9.4.17Lifting of Assembled Engines 9.4.18Engine Mounts 9.4.19Non-Phased Camshaft Gears 9.4.20Internal Coolant Orifice 9.4.21Calibration 10Stand/Engine Calibration 10.1Procedure 10.1.1Reporting of Reference Results 10.1.2Analysis of Reference/Calibration Oils 10.1.3Instrument Calibration 10.2Engine Torque Measurement System 10.2.3Fuel Flow Measurement System 10.2.4Coolant Flow Measurement System 10.2.5Thermocouple and Temperature Measurement System 10.2.6Humidity Measurement System 10.2.7Other Instrumentation 10.2.8Test Procedure 11External Oil System 11.1Flush Effectiveness Demonstration 11.2Preparation for Oil Charge 11.3Initial Engine Start-Up 11.4New Engine Break-In 11.5Oil Charge for Break-In 11.5.2Break-In Operating Conditions 11.5.3Standard Requirements for Break-In 11.5.4Routine Test Operation 11.6Start-Up and Shutdown Procedures 11.6.1Flying Flush Oil Exchange Procedures 11.6.2Test Operating Stages 11.6.3Stabilization to Stage Conditions 11.6.4Stabilized BSFC Measurement Cycle 11.6.5BLB1 Oil Flush Procedure for BL Oil Before Test Run 1 11.6.6BSFC Measurement of BLB1 Oil Before Test Oil 11.6.7BLB2 Oil Flush Procedure for BL Oil Before Test Oil Run 2 11.6.8BSFC Measurement of BLB2 Oil Before Test Oil 11.6.9Percent Delta Calculation for BLB1 vs. BLB2 11.6.10Test Oil Flush Procedure 11.6.11Test Oil Aging, Phase I 11.6.12BSFC Measurement of Aged (Phase I) Test Oil 11.6.13Test Oil Aging, Phase II 11.6.14BSFC Measurement of Aged (Phase II) Test Oil 11.6.15Oil Consumption and Sampling 11.6.16Flush Procedure for BL Oil (BLA) After Test Oil 11.6.17General Test Data Logging Forms 11.6.18Diagnostic Review Procedures 11.6.19Determination of Test Results 12Final Test Report 13Precision and Bias 14Keywords 15Annexes  ASTM Test Monitoring Center Organization Annex A1ASTM Test Monitoring Center: Calibration Procedures Annex A2ASTM Test Monitoring Center: Maintenance Activities Annex A3ASTM Test Monitoring Center: Related Information Annex A4Detailed Specifications and Drawings of Apparatus Annex A5Oil Heater Bolton 255 Refill Procedure Annex A6Engine Part Number Listing Annex A7Safety Precautions Annex A8Sequence VIF Test Report Forms and Data Dictionary Annex A9Statistical Equations for Mean and Standard Deviations Annex A10Determining the Oil Sump Full Level & Consumption Annex A11Fuel Injection Evaluation Annex A12Pre-test Maintenance Checklist Annex A13Blow-by Ventilation System Requirements Annex A14Calculation of Test Results Annex A15Calculation of Un-weighted Baseline Shift Annex A16Non-Phased Cam Gear and Position Actuator Installation and GM Short Block Assembly Procedure Annex A17Appendix  Procurement of Test Methods Appendix X11.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 1058 加购物车

在线阅读 收 藏

5.1 The ID and CD values and the DCN value determined by this test method provides a measure of the ignition characteristics of diesel fuel oil used in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test can be applied to non-conventional diesel fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 370 mL and a test time of approximately 30 min using a fit-for-use instrument.1.1 This test method covers the quantitative determination of the derived cetane number of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No.1-D and 2-D regular, low and ultra-low-sulfur diesel fuel oils, European standard EN590, and Canadian standards CAN/CGSB-3.517, CAN/CGSB-3.520, and CAN/CGSB-3.522. The test method may be applied to the quantitative determination of the derived cetane number of biodiesel, blends of diesel fuel oils containing biodiesel material (for example, Specifications D975, D6751, and D7467), and diesel fuel oil blending components.1.2 This test method utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed synthetic air. A dynamic pressure wave is produced from the combustion of the sample. An equation converts the ignition delay and the combustion delay determined from the dynamic pressure curve to a derived cetane number (DCN).1.3 This test method covers the ignition delay ranging from 1.9 ms to 25 ms and combustion delay ranging from 2.5 ms to 160 ms (30 DCN to 70 DCN). However, the precision stated only covers the range of DCN results from 38.45 to 64.35.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 Biodiesel is a fuel commodity primarily used as a blending component with diesel fuel. It is important to check the concentration of biodiesel in the diesel fuel in order to make sure it is either not below the minimum allowable limit and or does not exceed the maximum allowable limit.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends.1.1 This test method determines fatty acid methyl esters (FAME or biodiesel) in diesel fuel oils. FAME can be quantitatively determined from 1.0 % to 30.0 % by volume. This test method uses linear variable filter (LVF) array based mid-infrared spectroscopy for monitoring FAME concentration.NOTE 1: See Section 6 for a list of interferences that could affect the results produced from this method.1.2 This test method uses a horizontal attenuated total reflectance (HATR) crystal and a univariate calibration.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers reinforced plastic pipe and fitting system made from epoxy resin and glass-fiber reinforcement, together with adhesive for joint assembly, intended for services in aviation jet turbine fuel lines installed below ground. The fiberglass pipe shall be round and straight, and the pipe and fittings shall be of uniform density, resin content, and surface finish. Tests shall be conducted on the specimen to determine compliance with the following performance requirements: joint strength; hydrostatic strength; impact resistance; boil resistance; external load resistance; and degradation resistance.1.1 This specification covers a reinforced plastic pipe and fittings system made from epoxy resin and glass-fiber reinforcement, together with adhesive for joint assembly, intended for service up to 150°F (65.6°C) and 150-psig (1034-kPa) operating pressure and surges up to 275 psig (1896 kPa) in aviation jet turbine fuel lines installed below ground.1.2 The dimensionless designator NPS has been substituted in this specification for such traditional terms as nominal diameter, size, and nominal size.1.3 The values stated in inch-pound units are to be regarded as standard. The values in parentheses are for information only.1.4 The following safety hazards caveat pertains only to the test method portion, Section 9, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Biodiesel is a fuel commodity primarily used as a value-added blending component with diesel fuel.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends containing FAME.5.3 The use of triglycerides in fuels is not approved for transportation applications within any ASTM specification. This test method allows the quantification of triglyceride concentration in biodiesel blends, thus enabling detection of out-of-specification blending.5.4 This test method is fast, simple to run, inexpensive and requires no sample preparation.1.1 This test method covers the determination of fatty acid methyl ester (FAME) biodiesel and triglyceride (TAG) concentrations in traditional diesel and renewable diesel fuel blends using a portable mid-infrared spectrometer.1.2 The method applies to samples with biodiesel concentrations from 3 % to 40 % by volume. Additionally, it applies to samples with biodiesel concentrations from 2 % to 27 % by volume which contain triglycerides concentrations from 1 % to 10 % by volume. Triglycerides from 2 % to 10 % by volume can be determined in samples of diesel having biodiesel concentrations from 3 % to 27 % by volume. FAME and triglyceride can be simultaneously determined outside these stated ranges, but the stated precision estimates do not apply.1.3 The method is not able to distinguish TAG and FAME if the TAG concentrations is below 0.142× the measured FAME concentrations.1.4 This procedure is not appropriate for the determination of the concentration of biodiesel in the form of fatty acid ethyl esters (FAEE), see Section 6 for further discussion of possible interferences.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method describes a sensitive method for estimating the intrinsic stability of an oil. The intrinsic stability is expressed as S-value. An oil with a low S-value is likely to undergo flocculation of asphaltenes when stressed (for example, extended heated storage) or blended with a range of other oils. Two oils each with a high S-value are likely to maintain asphaltenes in a peptized state and not lead to asphaltene flocculation when blended together.5.2 This test method can be used by petroleum refiners to control and optimize the refinery processes and by blenders and marketers to assess the intrinsic stability of blended asphaltene-containing heavy fuel oils.1.1 This test method covers procedures for quantifying the intrinsic stability of the asphaltenes in an oil by automatic instruments using optical detection.1.2 This test method is applicable to residual products from thermal and hydrocracking processes, to products typical of Specifications D396 Grades No. 5L, 5H, and 6, and D2880 Grades No. 3-GT and 4-GT, and to crude oils, providing these products contain 0.5 % by mass or greater concentration of asphaltenes (see Test Method D6560).1.3 This test method quantifies asphaltene stability in terms of state of peptization of the asphaltenes (S-value), intrinsic stability of the oily medium (So) and the solvency requirements of the peptized asphaltenes (Sa).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 Biodiesel is a blendstock commodity primarily used as a value-added blending component with diesel fuel.5.2 This test method is applicable for quality control in the production and distribution of diesel fuel and biodiesel blends containing FAME.1.1 This test method covers the determination of the content of fatty acid methyl esters (FAME) biodiesel in diesel fuel oils. It is applicable to concentrations from 1.00 % to 20 % by volume (see Note 1). This procedure is applicable only to FAME. Biodiesel in the form of fatty acid ethyl esters (FAEE) will cause a negative bias.NOTE 1: Using the proper ATR sample accessory, the range may be expanded from 1 % to 100 % by volume, however precision data is not available above 20 % by volume.1.2 The values stated in SI units of measurement are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
713 条记录,每页 15 条,当前第 25 / 48 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页