微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Specification D1655 provides a maximum permissible concentration (5.7 mg/L) of MDA in aviation turbine fuel. This test method will allow the quantification of MDA in aviation turbine fuels. The MDA additive is used for fuel thermal stability control and to reduce fuel degradation caused by the presence of trace metals (copper in particular) in aviation fuels.1.1 This test method covers the determination of the metal deactivator additive (MDA) content of aviation turbine fuels. The specific MDA determined and used to develop this test method is N,N′-disalicylidene-1,2-propanediamine. Other MDAs have not been tested by this test method.1.1.1 This test method specifically covers the determination of uncomplexed MDA content in aviation turbine fuel. MDA is a chelator of divalent metal ions, and the MDA-metal ion complexed species content of aviation turbine fuel will not be accounted for by this test method.1.2 This test method is divided into two procedures: (1) Procedure A uses a semi-portable capillary-liquid chromatography system (Capillary-HPLC) that may be used in the field or laboratory; (2) Procedure B uses a standard laboratory version of liquid chromatography (Conventional-HPLC). Procedures A and B have separate precisions.1.3 The test method has an interim repeatability determined in accordance with Practice D6300. Based on the mean values of the samples used in the interim repeatability study, Procedure A is applicable in the range of 0.50 mg/mL to 10.0 mg/mL; the range for Procedure B is 0.60 mg/mL to 9.6 mg/mL. Higher concentrations can be determined by dilution, but the precision of the test method has not been determined.1.3.1 An extended interlaboratory study (ILS) will be conducted in the future to determine the full repeatability and reproducibility and the final applicable concentration ranges.1.3.2 The test method applies to MDA in petroleum-based aviation fuels and Synthetic Aviation Fuels (SAF). However, for the interim precision, a petroleum-based aviation fuel was used. Future ILS will include petroleum-based and SAFs. The test method is applicable to aviation fuels conforming to Specification D1655.1.4 Appendix X2 indicates other additives that have been verified to not interfere with the analysis of this test method.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

This specification covers requirements and test methods for the qualification of factory assembled anodeless risers and transition fittings, for use in polyethylene (PE), in sizes through NPS 8, and Polyamide 11 (PA11), in sizes through NPS 6, gas distribution systems. The bend radius, steel pipe thread, steel flanges, and gas pressure containing factory welding shall meet the requirements prescribed. Temperature cycling test, tensile pull test, leak test, and constant tensile load joint test shall be performed to meet the requirements prescribed.1.1 This specification covers requirements and test methods for the qualification of factory assembled anodeless risers and transition fittings, for use in polyethylene (PE), in sizes through NPS 16, and Polyamide 11 (PA11) and Polyamide 12 (PA12), in sizes through NPS 6, gas distribution systems.1.2 The test methods described are not intended to be routine quality control tests.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 Throughout this specification footnotes are provided for informational purposes and shall not be considered as requirements of this specification.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The determination of group type composition of diesel fuel is useful for evaluating quality and expected performance. Aromatics and polyaromatics, in particular, are related to combustion characteristics, cetane number, energy content, lubricity, water solubility and exhaust emissions.5.1.1 Aromatic hydrocarbon type analysis may be useful for evaluating refinery processes.5.1.2 The ability to determine aromatics content in the presence of FAME may be useful to users of diesel fuel.1.1 This test method covers a standard procedure for the determination of group type totals of aromatic, polyaromatic, and FAME content in diesel fuel using gas chromatography and vacuum ultraviolet absorption spectroscopy detection (GC-VUV).1.1.1 Polyaromatic totals are the result of the summation of diaromatic and tri-plus aromatic group types. Aromatics are the summation of monoaromatic and polyaromatic group types. FAME content is the result of summation of individual fatty acid methyl esters.1.1.2 This test method is applicable for renewable diesel fuels from hydrotreated vegetable oil (HVO) or animal fat, gas to liquid (GTL) diesel, light cycle oil, wide boiling range aromatic solvents and biodiesel blends.1.2 Concentrations of group type totals are determined by percent mass or percent volume. The applicable working ranges are as follows:Total Aromatics %Volume 0.088 to 77.000Total Aromatics %Mass 0.104 to 79.451MonoAromatics %Mass 0.076 to 67.848Diaromatics %Mass 0.027 to 34.812Tri-plus aromatics %Mass 0.45 to 6.77PAH %Mass 0.028 to 41.586FAME %Volume 1.08 to 21.671.3 Diesel fuel containing biodiesel, (FAME, that is, fatty acid methyl esters including soy methyl esters, rapeseed methylesters, tallow methylesters and canola methylesters) can be analyzed by this test method. The FAME component completely elutes from the analytical column independent of feedstock.1.4 Individual hydrocarbon components are not reported by this test method; however, any individual component determinations are included in the appropriate summation of the totals of aromatic, polyaromatic, monoaromatic, diaromatic, tri-plus aromatic, or FAME groups.1.4.1 Individual components are typically not baseline-separated by the procedure described in this test method. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.5 This test method may apply to other hydrocarbon streams boiling between heptane (98 °C) and triacontane (450 °C), but has not been extensively tested for such applications.1.6 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The determination of class group composition of automotive spark-ignition fuels as well as quantification of various individual species such as oxygenates and aromatics in automotive fuels is useful for evaluating quality and expected performance, as well as compliance with various governmental regulations.1.1 This test method is a standard procedure for the determination in percent mass or percent volume of hydrocarbon group types (paraffins, isoparaffins, olefins, naphthenes, aromatics), methanol, ethanol, benzene, toluene, ethylbenzene, xylenes, naphthalene, and methylnaphthalenes in automotive spark-ignition engine fuels using gas chromatography and vacuum ultraviolet detection (GC-VUV).1.1.1 The concentration ranges for which precision has been determined are as follows:Property Units Applicable RangeParaffins % Volume 3.572 to 23.105Isoparaffins % Volume 22.697 to 71.993Olefins % Volume 0.011 to 44.002Olefins % Mass 0.027 to 41.954Naphthenes % Volume 0.606 to 18.416Aromatics % Volume 14.743 to 58.124Methanol % Volume 0.063 to 3.426Ethanol % Mass 0.042 to 15.991Benzene % Volume 0.09 to 1.091Toluene % Volume 0.698 to 31.377Ethylbenzene % Volume 0.5 to 3.175Xylenes % Volume 3.037 to 18.955Naphthalene % Volume 0.019 to 0.779Methylnaphthalenes % Volume 0.21 to 1.4841.1.2 This test method may be applicable to other concentration ranges, to other properties, or to other hydrocarbon streams, however precision has not been determined.1.2 Individual hydrocarbon components are typically not baseline-separated by the procedure described in this test method, that is, some components will coelute. The coelutions are resolved at the detector using VUV absorbance spectra and deconvolution algorithms.1.3 While this test method reports percent mass and percent volume for several specific components that may be present in automotive spark-ignition engine fuel, it does not attempt to speciate all possible components that may occur in automotive spark-ignition engine fuel. In particular, this test method is not intended as a type of detailed hydrocarbon analysis (DHA).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See specific hazard statements in subsection 8.4 and Section 9.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

定价: 541元 / 折扣价: 482 加购物车

在线阅读 收 藏

定价: 689元 / 折扣价: 586 加购物车

在线阅读 收 藏
AS 2237-1979 Plastics fuel and emission control tube 被代替 发布日期 :  实施日期 : 

定价: 345元 / 折扣价: 294 加购物车

在线阅读 收 藏
713 条记录,每页 15 条,当前第 26 / 48 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页