微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读
ASTM D411-08 Standard Test Methods for Shellac Used for Electrical Insulation (Withdrawn 2013) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

Polymerization time provides a measure of time during which shellac retains its plasticity and flow properties at the specified temperature before gelling or polymerizing to the tough rubbery insoluble form. This test is important in determining the quality of different lots, useful shelf-life, batch uniformity, and processing characteristics of shellac. 1.1 These test methods cover tests for shellac in the dry button or powder form to be used for electrical insulating purposes. Typically, shellac is used as a bonding agent for mica splittings and reconstituted mica paper products, or as a coating or adhesive for other material. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Note 1—There is no similar or equivalent IEC standard. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers inorganic fiber-reinforced organic felt, and inorganic fiber-based asphaltic and nonasphaltic felt underlayments for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products. Materials shall be sampled and tested suitably to examine their conformance with performance requirements such as tear strength, pliability, behavior on heating, liquid water transmission, dimensional stability at low to high humidity conditions, and elongation.1.1 This specification covers (1) inorganic fiber-reinforced organic felt underlayment, and (2) inorganic fiber-based felt for use as underlayment with steep-slope roofing products. The intent of this specification is to provide criteria for producing and evaluating underlayments with a significantly reduced tendency to wrinkle before or after the installation of steep roofing products.1.2 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.3 The following safety hazards caveat pertains only to the test method portion, Section 8, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory requirements prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

1.1 This test method establishes the procedures for measuring the ionizing radiation inside the radiation chamber of a low level X-ray security screening system. 1.2 This test method establishes minimum requirements for the radiation detector used to measure this ionizing radiation inside the radiation chamber. 1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.4 This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this test standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific hazards statements are given in Section 7.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

This specification covers the design and minimum performance criteria, and associated test methods (including apparatuses required for) for body protectors used in horse sports and horseback riding. The body protectors shall meet specified requirements for the material used, protector assembly, extent and form of protective material, attachments, and dimension, sizing, and body coverage. The testing procedures that the body protectors shall go through are shock attenuation test, penetration and deformation test, impact sites test, padding separation test, and closure test. Prior to testing, each body protector should be conditioned in accordance to ambient temperature, low temperature, high temperature, and water immersion.1.1 This specification covers minimum performance criteria and describes test methods for body protectors for use in horse sports and horseback riding.1.2 It is not the intention of this specification to bar from consideration materials of improved quality or performance not known at the time of development of this specification.1.3 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides a means of assuring that products supplied during ship construction and maintenance are substantially the same as the materials on which the original selection was based. The selection of a paint for shipboard use frequently involves laboratory and field evaluations of candidate materials as part of the specification process. When a paint is selected, it shall have the same composition and characteristics throughout the delivery period as the materials originally evaluated.5.1.1 When significant changes in composition or paint characteristics are observed, it is necessary to determine the cause of the change (production error or formulation change) and its impact on coating performance. Actions to take if a formulation change is required are specified in 6.5.5.2 This practice is not meant to cover all possible chemical or physical tests that may be used to identify a coating. Additional tests may be needed to meet specific user needs.5.3 This practice does not recommend specific tolerance limits for the tests indicated. Tolerance values need to be agreed upon by the coating supplier, the shipbuilder, and the ship’s owner.5.4 This practice does not establish critical attributes that must be controlled. These attributes are selected by the shipbuilder and the ship’s owner based on specific needs (for example, colors).1.1 This practice provides the quality control receipt inspection procedures for protective coatings (paints) procured for end item use on ships and other marine structures. The practice includes methods and procedures for verifying that coating materials received are within the range of physical and chemical characteristics as those originally specified and tested.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 Viscosity values at the shear rate and temperature of this test method have been indicated to be related to the viscosity providing hydrodynamic lubrication in automotive and heavy duty engines in severe service.75.2 The viscosities of engine oils under such high temperatures and shear rates are also related to their effects on fuel efficiency and the importance of high shear rate, high temperature viscosity has been addressed in a number of publications and presentations.71.1 This test method covers the laboratory determination of the viscosity of engine oils at 150 °C and 1.0·106 s−1 using a viscometer having a slightly tapered rotor and stator called the Tapered Bearing Simulator (TBS) Viscometer.21.2 The Newtonian calibration oils used to establish this test method range from approximately 1.2 mPa·s to 7.7 mPa·s at 150 °C. The precision has only been determined for the viscosity range 1.47 mPa·s to 5.09 mPa·s at 150 °C for the materials listed in the precision section.1.3 The non-Newtonian reference oil used to establish the shear rate of 1.0·106 s−1 for this test method has a viscosity closely held to 3.55 mPa·s at 150 °C by using the absolute viscometry of the TBS.1.4 Manual, semi-automated, and fully automated TBS viscometers were used in developing the precision statement for this test method.1.5 Application to petroleum products such as base oils and formulated engine oils was determined in preparing the viscometric information for this test method.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 This test method uses the milliPascal·second (mPa·s) as the unit of viscosity. This unit is equivalent to the centipoise (cP).1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

This practice covers the design, material grouping classification, and manufacture of wire image quality indicators (IQI) used to indicate the quality of radiologic images. This practice, applicable to X-ray and gamma-ray radiology, covers the use of wire penetrameters as the controlling image quality indicator for the material thickness range from 6.4 to 152 mm [0.25 to 6.0 in.]. The alloy group(s) of the material, the thickness or thickness range of the material, and the applicable IQI's that represent the required IQI thickness(s) and alloy(s) shall be considered when selecting IQI's.1.1 This practice2 covers the design, material grouping classification, and manufacture of wire image quality indicators (IQI) used to indicate the quality of radiographic images.1.2 This practice is applicable to X-ray and gamma-ray radiography.1.3 This practice covers the use of wire penetrameters as the controlling image quality indicator for the material thickness range from 6.4 to 152 mm (0.25 to 6.0 in.).1.4 The values stated in inch-pound units are to be regarded as standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 This test method is based on Test Method F903 for measuring resistance of chemical protective clothing materials to penetration by liquids. This test method is normally used to evaluate specimens from individual finished items of protective clothing and individual samples of materials that are candidates for items of protective clothing.5.1.1 Finished items of protective clothing include gloves, arm shields, aprons, gowns, coveralls, hoods, and boots.5.1.2 The phrase “specimens from finished items” encompasses seamed and other discontinuous regions, as well as the usual continuous regions of protective clothing items.5.2 It is known that body fluids penetrating protective clothing materials are likely to carry microbiological contaminants; however, visual detection methods are not sensitive enough to detect minute amounts of liquid containing microorganisms (1-3).7 This test method uses media containing Phi-X174 Bacteriophage. The visual detection technique of this test method is supplemented with a biologically based assay capable of detecting virus under the specified test conditions.5.3 Test Method F1670/F1670M allows the screening of protective clothing materials for resistance to penetration with synthetic blood as a challenge liquid. Test Method F1670/F1670M uses the same penetration test cell and technique, but exposes material specimens to synthetic blood with visual detection of liquid penetration. Materials passing Test Method F1670/F1670M should then be tested against bacteriophage penetration using this test method to verify performance.5.4 This test method has been specifically designed for measuring penetration of a surrogate microbe for Hepatitis (B and C) and the Human Immunodeficiency Viruses. The surrogate, Phi-X174 Bacteriophage, used in this test method is similar to HCV in size and shape but also serves as a surrogate for HBV and HIV. Inferences about protection from other pathogens must be assessed on a case-by-case basis.5.5 Part of the protocol in Procedures A and B in Table 1 for exposing the protective clothing material specimens to the Phi-X174 Bacteriophage challenge suspension involves pressurization of the penetration cell to 13.8 kPa [2 psig]. This hydrostatic pressure has been documented to discriminate between protective clothing material performance and correlate with visual penetration results that are obtained with a human factors validation (4). Some studies, however, suggest that mechanical pressures exceeding 345 kPa [50 psig] can occur during actual clinical use (5, 6). Therefore, it is important to understand that this test method does not simulate all the physical stresses and pressures that might be exerted on protective clothing materials during actual use.5.6 Medical protective clothing materials are intended to be a barrier to blood, body fluids, and other potentially infectious materials. Many factors can affect the wetting and penetration characteristics of body fluids, such as surface tension, viscosity, and polarity of the fluids, as well as the structure and relative hydrophilicity or hydrophobicity of the materials. The surface tension range for blood and body fluids (excluding saliva) is approximately 0.042 to 0.060 N/m (7). To help simulate the wetting characteristics of blood and body fluids, the surface tension of the Phi-X174 Bacteriophage challenge suspension is adjusted to approximate the lower end of this surface tension range. This is accomplished by adding surfactant to the Phi-X174 Bacteriophage nutrient broth. The resulting surface tension of the Phi-X174 Bacteriophage challenge suspension is approximately 0.042 ± 0.002 N/m.5.7 Testing prior to degradation by physical, chemical, and thermal stresses which could negatively impact the performance of the protective material could lead to a false sense of security. Additional tests should be considered that assess the impact of storage conditions and shelf life on disposable products and the impact of laundering and sterilization on reusable products. The integrity of the protective barrier may also be compromised during use by such effects as flexing and abrasion (8). Prewetting agents, such as alcohol, and contaminating agents, such as perspiration, may also compromise the integrity of the protective barrier. If these conditions are of concern, the performance of protective clothing materials should be evaluated for Phi-X174 Bacteriophage penetration following an appropriate preconditioning technique representative of the expected conditions of use.5.8 This test method involves a sensitive assay procedure for determining protective clothing material resistance to penetration by a surrogate microbe. Because of the length of time required to complete this method, it may not be suitable for use as a material or protective clothing quality control or quality assurance procedure.5.9 If this procedure is used for quality control or to support broad product claims concerning the viral-resistant properties of materials used in protective clothing, proper statistical design and analysis of larger data sets than those specified in this test method should be performed.8 Examples of acceptable sampling plans can be found in MIL-STD-105, ANSI/ASQ Z1.4, and ISO 2859-1.5.10 This test method requires a working knowledge of basic microbiological techniques (9).1.1 This test method is used to measure the resistance of materials used in protective clothing to penetration by blood-borne pathogens using a surrogate microbe under conditions of continuous liquid contact. Protective clothing material pass/fail determinations are based on the detection of viral penetration.1.1.1 This test method is not always effective in testing protective clothing materials having thick, inner liners which readily absorb the liquid assay fluid.1.2 This test method does not apply to all forms or conditions of blood-borne pathogen exposure. Users of the test method should review modes for worker/clothing exposure and assess the appropriateness of this test method for their specific applications.1.3 This test method has been specifically defined for modeling the viral penetration of Hepatitis (B and C) and Human Immunodeficiency Viruses transmitted in blood and other potentially infectious body fluids. Inferences for protection from other pathogens must be assessed on a case-by-case basis.1.4 This test method addresses only the performance of materials or certain material constructions (for example, seams) used in protective clothing and determined to be viral resistant. This test method does not address the design, overall construction and components, or interfaces of garments or other factors which may affect the overall protection offered by the protective clothing.1.5 The values stated in SI units or in other units shall be regarded separately as standard. The values stated in each system must be used independently of the other, without combining values in any way.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

1.1 This specification is applicable to the use of plastic lumber materials and of wood-plastic composite materials, and no other plastic composite materials, used as exterior wall coverings, as part of an exterior wall assembly.1.2 This specification is not applicable to the use of plastic lumber materials or of wood-plastic composite materials contained in exterior wall assemblies when not used as part of the exterior wall covering.1.3 This specification is not applicable to the use of any of the following types of materials:(a) poly(vinyl chloride) (PVC) siding (see Specification D3679, for standard vinyl siding, or Specification D7793, for insulated vinyl siding),(b) polypropylene siding (see Specification D7254),(c) wood (including lumber, plywood, engineered wood, coated wood, or painted wood).1.4 This specification is not applicable to the use of plastic lumber materials or of wood-plastic composite materials in any application other than the one addressed in 1.1. In particular, this specification is not applicable to the use of plastic lumber materials or of wood-plastic composite materials as exterior deck boards, stair treads, handrails, guards, or soffits.1.5 The values stated in inch-pound units are to be regarded as standard. Any SI units given in parentheses are for information only.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: There is no known ISO equivalent to this standard.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice is intended primarily for the testing of flat panel composites and sandwich core panels to an acceptance criteria most typically specified in a purchase order or other contractual document.5.2 Basis of Application—There are areas in this practice that require agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization.1.1 This practice establishes two procedures for ultrasonic testing (UT) of flat panel composites and flat sandwich core panels (parallel surfaces). Typical as-fabricated lay-ups include uniaxial, cross ply and angle ply laminates; as well as honeycomb sandwich core materials. These procedures can be used throughout the life cycle of the materials; product and process design optimization, on line process control, after manufacture inspection, and in service inspection. Contact methods such as angle-beam techniques using shear waves, or surface-beam techniques using Lamb waves, are not discussed.1.2 Ultrasonic testing is a common subsurface method for detection of laminar oriented discontinuities. Two techniques can be considered based on panel surface accessibility; pulse echo for one sided and through transmission (bubblers/squirters) for two sided. As used in this practice, both require the use of a pulsed straight-beam ultrasonic longitudinal wave followed by observing indications of either the reflected (pulse-echo) or received (through transmission) wave. The general types of anomalies detected by both techniques include foreign materials, delamination, disbond/un-bond, fiber de-bonding, inclusions, porosity, and voids.1.3 This practice provides two ultrasonic test procedures. Each has its own merits and requirements for inspection and shall be selected as agreed upon in a contractual document.1.3.1 Test Procedure A, Pulse Echo (non-contacting and contacting), is at a minimum a single transducer transmitting and receiving a longitudinal wave in the range of 0.5 to 20 MHz (see Fig. 1). This procedure requires access to only one side of the specimen. This procedure can be conducted by automated or manual means. Automated and manual test results may be imaged or recorded.FIG. 1 Test Procedure A, Pulse Echo Apparatus Set-up1.3.2 Test Procedure B, Through Transmission, is a combination of two transducers. One transmits a longitudinal wave and the other receives the longitudinal wave in the range of 0.5 MHz to 20 MHz (see Fig. 2). This procedure requires access to both sides of the specimen. This procedure is automated and the examination results are recorded.FIG. 2 Test Procedure B, Through Transmission Apparatus Set-up1.4 This practice does not specify accept-reject criteria.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 Method Considerations—The objective of most groundwater sampling programs is to obtain samples that are similar in composition to that of the formation water near the well screen. The low-flow purging and sampling method uses the stabilization of indicator parameters to determine when the pump discharge is considered to represent a flow-weighted average of the formation water. Measurements of operational parameters are used to determine potential sampling bias (for example, artifactual turbidity and increased temperature) that may have been introduced by pumping operations and to ensure that the sample is representative of formation water. The low-flow purge rate minimizes lowering of the ambient groundwater level and thereby minimizes potential entrainment of blank-riser pipe (and potentially stagnant) water above or below the screen into the screened-zone of the well. This sampling method assumes that the well has been properly designed and constructed as described in Practices D5092/D5092M and D6725/D6725M, adequately developed as described in Guide D5521/D5521M, and has received proper well maintenance and rehabilitation as described in Guide D5978/D5978M (see Note 1).NOTE 1: This Standard is not intended to replace or supersede any regulatory requirements, standard operating procedure (SOP), quality assurance project plan (QAPP), ground water sampling and analysis plan (GWSAP) or site-specific regulatory permit requirements. The procedures described in this Standard may be used in conjunction with regulatory requirements, SOPs, QAPPs, GWSAPs or permits where allowed by the authority with jurisdiction.5.2 Applicability—Low-flow purging and sampling may be used in a monitoring well that can be pumped at a constant low-flow rate without continuously increasing drawdown in the well (2). If a well cannot be purged without continuously increasing drawdown even at very low pumping rates (for example, 50 – 100 mL/min), the well should not be sampled using this sampling method as described in this standard; a passive sampling method, as described in Guide D7929, may be considered as an alternative.5.3 Target Analytes—Low-flow purging and sampling can be used to collect samples for all categories of aqueous-phase contaminants and naturally-occurring analytes. It is particularly well suited for use where it is desirable to sample aqueous-phase constituents that may sorb or partition to particulate matter, because the method minimizes the potential for artifactual turbidity compared with high flow/high volume purging using a pump, bailer, or inertial-lift device (9-12).1.1 This practice describes the method of low-flow purging and sampling used to collect groundwater samples from wells to assess groundwater quality.1.2 The purpose of this procedure is to collect groundwater samples that represent a flow-weighted average of solute and colloid concentrations transported through the formation near the well screen under ambient conditions. Samples collected using this method can be analyzed for groundwater contaminants and/or naturally occurring analytes.1.3 This practice is generally not suitable for use in wells with very low-yields and cannot be conducted using grab sampling or inertial lift devices. This practice is not suitable for use in wells with non-aqueous phase liquids.1.4 Units—The values stated in SI units are to be regarded as standard. The values given in parentheses are approximate mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This practice offers a set of instructions for performing one or more specific operations. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this practice may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project's many unique aspects. The word “standard” in the title means only that the document has been approved through the ASTM consensus process.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Coagulated pentane insolubles can include oil-insoluble materials, some oil-insoluble resinous matter originating from oil or additive degradation, soot from incomplete diesel fuel combustion, or a combination of all three.5.2 A significant change in coagulated pentane insolubles indicates a change in oil, and this could lead to lubrication system problems.5.3 Coagulated pentane insolubles measurements can also assist in evaluating the performance characteristics of a used oil or in determining the cause of equipment failure.5.4 High values of coagulated pentane insolubles have been associated with plugged oil filters, leading to opening of the bypass valve and circulation of unfiltered oil in the engine. This can lead to increased piston deposits, increased bearing wear, and premature engine failure.1.1 This test method covers the determination of coagulated pentane insolubles in used lubricating oils by a paper filtration method.1.2 This test method was originally developed by the Fuels, Lubricants, and Environmental Committee (FL&E) of the Locomotive Maintenance Officer’s Association (LMOA).21.3 This test method is used primary for testing used diesel engine oils from railroad locomotive service. It may be applied to other samples types but precision, bias, and significance have not been determined for samples other than used railroad locomotive diesel engine oils.1.4 This test method, in general, does not correlate with Test Method D893 on Insolubles in Lubricating Oils, since it uses separation by centrifugation and a more concentrated solution of anti-coagulant.1.5 The correlation between this test method and Appendix A4 (Enhanced Thermal Gravimetric Analysis (TGA) Procedure) in Test Method D5967 has not been investigated.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.2, 7.3, and 7.4.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

This specification covers flexible, preformed sheet membrane materials to be used as vapor retarders in contact with soil or granular fill under concrete slabs. The specified tests are conducted on new materials and materials that have been conditioned or exposed to simulate potential service conditions. The membranes are classified into 3 classes. The materials shall be subject to tests for water vapor permeance, tensile strength, and puncture resistance. Under special conditions, the material shall also conform to the required flame spread, permeance after soil poison petroleum vehicle exposure, and permeance after exposure to ultraviolet light.1.1 This specification covers flexible, preformed sheet membrane materials to be used as vapor retarders in contact with soil or granular fill under concrete slabs.1.1.1 This specification does not cover bituminous vapor retarders. See Specification E1993/E1993M for information on bituminous vapor retarders.1.2 The specified tests are conducted on new materials and materials that have been conditioned or exposed to simulate potential service conditions.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
980 条记录,每页 15 条,当前第 29 / 66 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页