微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 The purpose of this guide is to provide end-product manufacturers and other users with technical information and methods recommended towards the achievement of successful application of crimped wire terminals.4.2 For any given use, there is generally a choice of terminal types available, employing different mechanical design, materials, and installation tooling. Although terminals available to choose from may be similarly rated, typically according to wire sizes and combinations, their electrical contact performance in the end product may vary substantially. For many applications, the end-product reliability and user safety is substantially influenced by the choice of terminal and the quality of the completed termination. This guidance document contains specialized information on selection, assembly, and quality control of crimped wire terminals, covering aspects considered to be necessary to achieve reliable long-term operation in the intended application. This information is not generally found in commercial literature or textbooks. The methods discussed utilize connection resistance as the primary measure of termination quality, and change of connection resistance with time as the measure of termination deterioration. The methods are based on a foundation of modern electrical contact theory and practice.1.1 This guide contains practices for specifying and evaluating the electrical contact performance of crimped-type terminations with solid or stranded conductors.1.2 This guide provides information relevant to the electrical contact performance of a crimped wire termination. It does not cover other aspects of selection and use of crimped terminals.1.3 The methods discussed in this guide apply only to the wire termination, which is the electrical contact interface between the conductor(s) and the terminal. Other aspects important to terminal evaluation, such as the properties and performance of electrical insulation, the effectiveness of strain relief features, and the quality of contact between the terminal and other electrical circuit elements, are not included.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to become familiar with all hazards including those identified in the appropriate Safety Data Sheet (SDS) for this product/material as provided by the manufacturer, to establish appropriate safety, health, and environmental practices, and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Quality Control and Quality Assurance practices are important for the optimum operation of testing laboratories using D16 methods for aromatic hydrocarbons and related materials. Quality procedure guidelines, like those described in this document or other suitably correct QA/QC-related reference, can be useful to optimally perform these methods.1.1 This guide contains non-mandatory Quality Assurance/Quality Control (QA/QC) activities that may be referenced in standards maintained by ASTM Committee D16 on Aromatic Hydrocarbons and Related Materials.1.2 This guide does not purport to address all of the issues that may be pertinent to an active QA/QC process.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 These are minimum standards of quality assurance applicable to forensic science service providers performing forensic chemical analysis on evidence.4.2 This practice is to be used by forensic science practitioners performing chemical analysis on evidence and reinforced by forensic science service provider management.1.1 This practice discusses procedures for quality assurance of forensic science service providers performing forensic chemical analysis. This practice provides a framework of quality in the processing of evidence, including: maintaining a quality management system; personnel duties, qualifications, training, and education; facility considerations; evidence handling; analytical procedures; instrument and equipment performance; chemicals and reagents; casework documentation and reporting; proficiency and competency testing; method validation and verification; audits; deficiency of analysis; and documentation requirements. Annex A1 – Annex A3 provide additional procedures that are discipline-specific.1.2 This practice cannot replace knowledge, skills, or abilities acquired through appropriate education, training, and experience (see Practice E2917), and is to be used in conjunction with professional judgment by individuals with such discipline-specific knowledge, skills, and abilities.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This practice is intended as a companion standard to ASTM Standard E 541, Standard Specification for Agencies Engaged in System Analysis and Compliance Assurance for Manufactured Building. Standard E 541 covers criteria by which the technical resources of agencies may be evaluated for their capability to perform the system analysis or compliance assurance function, or both, in the evaluation and inspection of manufactured building. This standard includes questions that should be asked of system analysis and compliance assurance agencies in order for the administrative agency to evaluate their competency. The preferred method for utilizing this standard is for qualified personnel of the administrative agency to visit the system analysis and compliance assurance agencies’ headquarters to speak to qualified personnel and examine pertinent records and documentation. Alternatively, the evaluation may be done at any location provided the agency being evaluated is fully informed as to the material and personnel they will need to have on hand for the evaluation.1.1 This practice is intended as a companion standard to Specification E541, Specification for Agencies Engaged in System Analysis and Compliance Assurance for Manufactured Building. Specification E541 covers criteria by which the technical resources of agencies may be evaluated for their capability to perform the system analysis or compliance assurance function, or both, in the evaluation and inspection of manufactured building. This standard 2 includes questions that should be asked of system analysis and compliance assurance agencies in order for the administrative agency to evaluate their competency. Personnel matters are not highlighted in this standard since they are covered in detail in Specification E541. This is not meant to imply that they are not important.1.2 The preferred method for utilizing this practice is for qualified personnel of the administrative agency to visit the system analysis and compliance assurance agencies' headquarters to speak to qualified personnel and examine pertinent records and documentation. Alternatively, the evaluation may be done at any location provided the agency being evaluated is fully informed as to the material and personnel they will need to have on hand for the evaluation.1.3 Some of the following will not be applicable in the evaluation of an agency that has not had prior experience as a building-evaluation organization. It is not the intent of this practice to preclude acceptance of such an agency provided it can otherwise demonstrate that its organizational procedures and experience in other product categories and experience of key personnel reflect a keen awareness of the problems and processes involved in manufactured building evaluation and thus warrant acceptance. In such instances the administrative agency may wish to consider extending provisional acceptance over a definite period of time, during which it is expected that the agency will have opportunity to gain the requisite experience and demonstrate its capabilities and compliance assurance functions for manufactured building.1.4 Failure of an agency to respond satisfactorily to one or more criteria in the following should not be sole cause for rejection. Such failure should be brought to the agency's attention and be subject to close scrutiny during subsequent reevaluations.1.5 This practice is intended to achieve uniformity in the regulation of manufactured building. It may be necessary to make changes and modifications in order to adapt to legislative or other regulatory requirements of some jurisdictions.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 The mission of an analytical laboratory is to provide quality analyses on nuclear fuel cycle materials. An analytical laboratory QA program is comprised of planned and systematic actions needed to provide confidence that this mission is conducted in an acceptable and consistent manner.4.2 The analytical laboratories involved in the analysis of nuclear fuel cycle materials are required to implement a documented QA program. Regulatory agencies may mandate some form of control requirements for all or a part of a laboratory's operation. A documented QA program is also necessary for those laboratory operations required to comply with ASME NQA-1 or ISO/IEC 17025, or the requirements of many accreditation bodies. Even when not mandated, laboratory QA programs should be established as a sound and scientific technical practice. This guide provides guidance for establishing and maintaining a QA program to control those analytical operations vital to ensuring the quality of chemical analyses.4.3 Quality assurance programs are designed and implemented by organizations to assure that the quality requirements for a process, product or service will be fulfilled. The quality system is complementary to technical requirements that may be specific to a process or analytical method. Each laboratory should identify applicable program requirements and use standards to implement a quality program that meets the appropriate requirement. This guide may be used to develop and implement an analytical laboratory QA program. Other useful implementation standards and documents are listed in Section 2 and Appendix X1.4.4 The guides for QA in the analytical laboratory within the nuclear fuel cycle have been written to provide guidance for each of the major activities in the laboratory and are displayed in Fig. 1. The applicable standard for each subject is noted in the following sections.FIG. 1 Essential Elements of Analytical Laboratory Quality Assurance System4.5 Although this guide describes “Recommended Practices” and “Recommendations” and uses suggestive rather than prescriptive language (for example, “should” as opposed to “shall”), the elements being addressed should not be interpreted as optional. An effective and comprehensive laboratory quality assurance/quality control program completely and adequately considers and includes all elements listed in Sections 5 – 17 of this guide.1.1 This guide covers the establishment and maintenance of a quality assurance (QA) program for analytical laboratories within the nuclear industry. References to key elements of ASME NQA-1 and ISO/IEC 17025 provide guidance to the functional aspects of analytical laboratory operations. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program.1.2 The essential, basic elements of a laboratory QA program appear in the following order:  SectionOrganization 5Quality Assurance Program 6Training and Qualification 7Procedures 8Laboratory Records 9Control of Records 10Management of Customer Requests and Commitments to Customers 11Control of Procurement 12Control of Measuring Equipment and Materials 13Control of Measurements 14Control of Nonconforming Work 15Candidate Actions 16Preventative Actions 171.3 Collection of samples and associated sampling procedures are outside the scope of this guide. The user may refer to sampling practices developed by Subcommittee C26.02.1.4 Nuclear laboratories are required to handle a variety of hazardous materials, including but not limited to radioactive samples and materials. The need for proper handling of these materials is discussed in 13.2.4. While this guide focuses on the nuclear laboratory QA program, proper handling of nuclear materials is essential for proper function of the QA program.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

This specification establishes quality assurance requirements for carbon and alloy steel wire, rods, and bars for mechanical fasteners. Manufacturing of materials shall conform to the melting, casting, deoxidation, grain size, hardenability, and thermal treatment practices of this specification. Chemical requirements shall conform to the specified limits of chemical composition for carbon steel. Requirements of metallurgical structure shall include course austenitic grain size, fine autenitic grain size, and speheroidized annealed material. The material shall be tested for decarburization, maximum tensile strength, reduction area, hardenability, grain size, calibration, dimensions, and tolerances. Surface condition, coating, workmanship, finish, appearance, and packaging shall also conform to the requirements of this specification.1.1 This specification establishes quality assurance requirements for the physical, mechanical, and metallurgical requirements for carbon and alloy steel wire, rods, and bars in coils intended for the manufacture of mechanical fasteners which includes: bolts, nuts, rivets, screws, washers, and special parts manufactured cold.NOTE 1: The Steel Industry uses the term “quality” to designate characteristics of a material which make it particularly well suited to a specific fabrication and/or application and does not imply “quality” in the usual sense.1.2 Wire size range includes 0.062 to 1.375 in.1.3 Rod size range usually includes 7/32 in. (0.219) to 47/64 in. (0.734) and generally offered in 1/64 increments (0.0156).1.4 Bar size range includes 3/8 in. (0.375) to 11/2 in. (1.500).1.5 Sizes for wire, rod and bar outside the ranges of paragraphs 1.2 – 1.4 may be ordered by agreement between purchaser and supplier.1.6 Material is furnished in many application variations. The purchaser should advise the supplier regarding the manufacturing process and finished product application as appropriate. Five application variations are:Cold HeadingRecessed HeadSocket HeadScrapless NutTubular Rivet1.6.1 Wire is furnished for all five application variations.1.6.2 Rod and bar are furnished to the single application variation; Cold Heading.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This practice may be used to continuously demonstrate the proficiency of analytical measurement systems that are used for establishing and ensuring the quality of petroleum and petroleum products.5.2 Data accrued, using the techniques included in this practice, provide the ability to monitor analytical measurement system precision and bias.5.3 These data are useful for updating test methods as well as for indicating areas of potential measurement system improvement.5.4 Control chart statistics can be used to compute limits that the signed difference (Δ) between two single results for the same sample obtained under site precision conditions is expected to fall outside of about 5 % of the time, when each result is obtained using a different measurement system in the same laboratory executing the same test method, and both systems are in a state of statistical control.1.1 This practice covers information for the design and operation of a program to monitor and control ongoing stability and precision and bias performance of selected analytical measurement systems using a collection of generally accepted statistical quality control (SQC) procedures and tools.NOTE 1: A complete list of criteria for selecting measurement systems to which this practice should be applied and for determining the frequency at which it should be applied is beyond the scope of this practice. However, some factors to be considered include (1) frequency of use of the analytical measurement system, (2) criticality of the parameter being measured, (3) system stability and precision performance based on historical data, (4) business economics, and (5) regulatory, contractual, or test method requirements.1.2 This practice is applicable to stable analytical measurement systems that produce results on a continuous numerical scale.1.3 This practice is applicable to laboratory test methods.1.4 This practice is applicable to validated process stream analyzers.1.5 This practice is applicable to monitoring the differences between two analytical measurement systems that purport to measure the same property provided that both systems have been assessed in accordance with the statistical methodology in Practice D6708 and the appropriate bias applied.NOTE 2: For validation of univariate process stream analyzers, see also Practice D3764.NOTE 3: One or both of the analytical systems in 1.5 may be laboratory test methods or validated process stream analyzers.1.6 This practice assumes that the normal (Gaussian) model is adequate for the description and prediction of measurement system behavior when it is in a state of statistical control.NOTE 4: For non-Gaussian processes, transformations of test results may permit proper application of these tools. Consult a statistician for further guidance and information.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843 加购物车

在线阅读 收 藏

5.1 Environmental data are often required for making regulatory and programmatic decisions. These data must be of known quality commensurate with their intended use.5.2 Data generation efforts involve the following: establishment of the DQOs; design of the project plan to meet the DQOs; implementation of the project plan; and assessment of the data to determine whether the DQOs have been met.5.3 Certain minimal criteria must be met by the field and laboratory organizations generating environmental data. Additional activities may be required, based on the DQOs of the data collection effort.5.4 This practice defines the criteria for field and laboratory organizations generating environmental data and identifies some other activities that may be required based on the DQOs.5.5 This practice emphasizes the importance of communication among those involved in establishing DQOs, planning and implementing the sampling and analysis aspects of environmental data generation activities, and assessing data quality.5.6 Environmental field operations are discussed in Section 7, and environmental laboratory operations are discussed in Section 8.1.1 Environmental data generation efforts are composed of four parts: (1) establishment of data quality objectives (DQOs); (2) design of field measurement and sampling strategies and specification of laboratory analyses and data acceptance criteria; (3) implementation of sampling and analysis strategies; and (4) data quality assessment. This practice addresses the planning and implementation of the sampling and analysis aspects of environmental data generation activities (Parts (1) and (2) above).1.2 This practice defines the criteria that must be considered to ensure the quality of the field and analytical aspects of environmental data generation activities. Environmental data include, but are not limited to, the results from analyses of samples of air, soil, water, biota, waste, or any combinations thereof.1.3 Adoption of a quality assurance project plan (QAPP) containing the goals, policies, procedures, organizational responsibilities, evaluation and reporting requirements, and other attributes of a quality management system including statement of DQOs should be adopted prior to application of this practice. Data generated in accordance with this practice are subject to a final assessment to determine whether the DQOs were met through application of quality control (QC) procedures that produce data that are scientifically valid for the purposes to which the data are intended. For example, many screening activities do not require all of the mandatory quality assurance (QA) and quality control (QC) steps found in this practice to generate data adequate to meet the project DQOs. The extent to which all of the requirements must be met remains a matter of technical judgement as it relates to the established DQOs.1.4 This practice presents extensive management requirements designed to ensure high-quality environmental data. The words “must,” “shall,” “may,” and “should” have been selected carefully to reflect the importance placed on many of the statements made in this practice.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 777 加购物车

在线阅读 收 藏
264 条记录,每页 15 条,当前第 4 / 18 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页