微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 This practice is useful for preparing extracts from fire debris for later analysis by gas chromatography mass spectrometry.4.2 This is a very sensitive separation procedure, capable of isolating quantities smaller than 1/10 μL of ignitable liquid residue from a sample.1.1 This practice describes the procedure for separation of small quantities of ignitable liquid residues from samples of fire debris using an adsorbent material to extract the residue from the static headspace above the sample, then eluting the adsorbent with a solvent.1.2 While this practice is suitable for successfully extracting ignitable liquid residues over the entire range of concentration, the headspace concentration methods are best used when a high level of sensitivity is required due to a very low concentration of ignitable liquid residues in the sample.1.2.1 Unlike other methods of separation and concentration, this practice is essentially nondestructive.1.3 Alternate separation and concentration procedures are listed in the referenced documents (see Practices E1386, E1388, E1413, and E2154).1.4 This practice does not replace knowledge, skill, ability, experience, education, or training and should be used in conjunction with professional judgment.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 A tiered strategy for characterization of nanoparticle properties is necessary to draw meaningful conclusions concerning dose-response relationships observed during inhalation toxicology experiments. This tiered strategy includes characterization of nanoparticles as produced (that is, measured as the bulk material sold by the supplier) and as administered (that is, measured at the point of delivery to a test subject) (Oberdorster et al. (6)).5.2 Test Methods B922 and C1274 and ISO 9277 and ISO 18757 exist for determination of the as produced surface area of bulk metal and metal oxide powders. During the delivery of nanoparticles in inhalation exposure chambers, the material properties may undergo change and therefore have properties that differ from the material as produced. This test method describes the determination of the as administered surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies.1.1 This test method covers determination of surface area of airborne metal oxide nanoparticles in inhalation exposure chambers for inhalation toxicology studies. Surface area may be measured by gas adsorption methods using adsorbates such as nitrogen, krypton, and argon (Brunauer et al. (1),2 Anderson (2), Gregg and Sing (3)) or by ion attachment and mobility-based methods (Ku and Maynard (4)). This test method is specific to the measurement of surface area by gas adsorption by krypton gas adsorption. The test method permits the use of any modern commercial krypton adsorption instruments but strictly defines the sample collection, outgassing, and analysis procedures for metal and metal oxide nanoparticles. Use of krypton is required due to the low overall surface area of particle-laden samples and the need to accurately measure the background surface area of the filter used for sample collection. Instrument-reported values of surface area based on the multipoint Brunauer, Emmett and Teller (BET) equation (Brunauer et al. (1), Anderson (2), Gregg and Sing (3)) are used to calculate surface area of airborne nanoparticles collected on a filter.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. State all numerical values in terms of SI units unless specific instrumentation software reports surface area using alternate units.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This test method was developed to provide for the enforcement of 26 CFR 48.4082-1(b), which mandates that all tax-exempt diesel fuels be dyed with an amount of Solvent Red 164 at a concentration that is spectrally equivalent to 3.9 lb/103 bbl (11.1 mg/L) of Solvent Red 26. It is employed to verify that the correct amount of Solvent Red 164 is being added to tax-exempt product at terminals or refineries prior to sale, and to detect the presence of Solvent Red 164 in taxed product intended for on-road use.5.1.1 Solvent Red 26 is the azo dye shown in Fig. 1. It is the standard against which the concentration of Solvent Red 164 is measured because it is available in a certified pure form. Solvent Red 164 is identical in structure to Solvent Red 26 except that it has hydrocarbon (alkyl) chains incorporated to increase its solubility in diesel and burner fuels. The exact composition of Solvent Red 164 will vary from manufacturer to manufacturer and lot to lot depending upon the extent of alkylation that occurs during production; however, its visible spectrum is virtually identical to the spectrum of Solvent Red 26. Solvent Red 164 is employed in the field (instead of Solvent Red 26) to dye tax-exempt diesel and burner fuels because of its higher solubility and relatively low cost.FIG. 1 Structure of Solvent Red 261.1 This test method covers the procedure for determining the concentration of dye Solvent Red 164 in commercially available diesel and burner fuels using visible spectroscopy.NOTE 1: This test method is suitable for all No. 1 and No. 2 grades in Specifications D396 and D975 and for grades DMA and DMB in Specification D2069.1.2 The concentration ranges specified for the calibration standards are established in response to the Internal Revenue Service dyeing requirements which state that tax-exempt diesel fuel satisfies the dyeing requirement only if it contains the dye Solvent Red 164 (and no other dye) at a concentration spectrally equivalent to 3.9 lb of the solid dye standard Solvent Red 26 per thousand bbl (11.1 mg/L) of diesel fuel.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Many microplastic particles enter the environment, including ambient waters and drinking water supplies, via wastewater sources resulting from both industrial processes and consumer products. The presence of high percentages of organic particles, including cellulose material originating from toilet paper and chitin-based materials originating from insect exoskeletons, makes visual identification and subsequent quantification of microplastic particles in wastewater difficult.5.2 This test method, associated sampling Practice D8332, and preparation Practice D8333 provide a standardized approach for the preparation of water and, particularly, wastewater samples. The isolation of microplastic particles from interfering contaminants by Practice D8333 enables positive identification and, therefore, quantification of microplastic particles.5.3 Using this test method, microplastic particles are characterized in terms of size, shape, and quantity, allowing for the enumeration of subsequent particle count for a given volume of sample. The method does not provide qualitative identification of plastic composition.1.1 This test method covers the determination of microplastic particle size distribution, shape characterization, and number concentration (particle counts) in sample extracts containing particles between 5 µm and 100 µm. Light is transmitted through a flow cell containing particles in liquid medium. The particles create shadows as they pass through the field of vision of a camera, producing a multitude of images. The images are then used to measure size, shape, and concentration.1.2 This test method is used as a complementary technique for microplastic particle and fiber polymer identification methods infrared microscopy and gas chromatography/mass spectroscopy pyrolysis.1.3 This test method requires that samples are collected according to Practice D8332 and prepared according to Practice D8333 prior to use.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 DRA is frequently added into multiproduct pipelines to increase throughput or reduce energy requirements of fuel movement. Although these additives are not used in jet fuel, contamination can occur from other products if proper batching guidelines are not followed or by other cases of human error. CRC Report No. 642 reviewed the impact of DRA on jet fuel fit-for-purpose performance and concluded that the fuel spray angle and atomization capability of several engine-type fuel nozzles can be adversely affected impacting high altitude relight performance at elevated concentrations. A method that accurately quantifies the amount of DRA in jet fuel can be useful in confirming the absence of significant contamination to protect the safety of aviation operations. This test method is designed to measure down to sub-100 µg/L levels of DRA in aviation fuel.1.1 This test method covers the measurement of high molecular weight polymers, in particular pipeline drag reducer additive (DRA), in aviation turbine fuels with a 72 µg/L lower detection limit. The method cannot differentiate between different polymers types. Thus, any non-DRA high molecular weight polymer will cause a positive measurement bias. Further investigation is required to confirm the polymer detected is DRA.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 Warning—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The total evaporation method is used to measure the isotopic composition of uranium, plutonium, and americium materials, and may be used to measure the elemental concentrations of these elements when employing the IDMS technique.5.2 Uranium and plutonium compounds are used as nuclear reactor fuels. In order to be suitable for use as a nuclear fuel the starting material must meet certain criteria, such as found in Specifications C757, C833, C753, C776, C787, C967, C996, or as specified by the purchaser. The uranium concentration, plutonium concentration, or both, and isotope abundances are measured by TIMS following this method.5.3 Americium-241 is the decay product of 241Pu isotope. The abundance of the 241Am isotope together with the abundance of the 241Pu parent isotope can be used to estimate radio-chronometric age of the Pu material for nuclear forensic applications Ref (6). The americium concentration and isotope abundances are measured by TIMS following this method.5.4 The total evaporation method allows for a wide range of sample loading with no significant change in precision or accuracy. The method is also suitable for trace-level loadings with some loss of precision and accuracy. The total evaporation method and modern instrumentation allow for the measurement of minor isotopes using ion counting detectors, while the major isotope(s) is(are) simultaneously measured using Faraday cup detectors.5.5 The new generation of miniaturized ion counters allow extremely small samples, in the picogram range, to be measured via the total evaporation method. The method may be employed for measuring environmental or safeguards inspection samples containing nanogram quantities of uranium or plutonium. Very small loadings require special sample handling and careful evaluation of measurement uncertainties.5.6 Typical uranium analyses are conducted using sample loadings between 50 nanograms and 800 nanograms. For uranium isotope ratios the total evaporation method had been used in several recent NBL isotopic certified reference material (CRM) characterizations (for example (2, 3)). A detailed comparison of the total evaporation data on NBL uranium CRMs analyzed by the MAT 261 and TRITONTM instruments is provided in Ref (5). For total evaporation, plutonium analyses are generally conducted using sample loads in the range of 20 to 200 nanograms of plutonium.1.1 This method describes the determination of the isotopic composition, or the concentration, or both, of uranium, plutonium, and americium as nitrate solutions by the total evaporation method using a thermal ionization mass spectrometer (TIMS) instrument. Purified uranium, plutonium, or americium nitrate solutions are deposited onto a metal filament and placed in the mass spectrometer. Under computer control, ion currents are generated by heating of the filament(s). The ion currents are continually measured until the whole deposited solution sample is exhausted. The measured ion currents are integrated over the course of the measurement and normalized to a reference isotope ion current to yield isotope ratios.1.2 In principle, the total evaporation method should yield isotope ratios that do not require mass bias correction. In practice, samples may require this bias correction. Compared to the conventional TIMS method described in Test Method C1625, the total evaporation method is approximately two times faster, improves precision of the isotope ratio measurements by a factor of two to four, and utilizes smaller sample sizes. Compared to the C1625 method, the total evaporation method provides “major” isotope ratios 235U/238U, 240Pu/239Pu, and 241Am/243Am with improved accuracy.1.3 The total evaporation method is prone to biases in the “minor” isotope ratios (233U/238U, 234U/238U, and 236U/238U ratios for uranium materials and 238Pu/239Pu, 241Pu/239Pu, 242Pu/239Pu, and 244Pu/239Pu ratios for plutonium materials) due to peak tailing from adjacent major isotopes. The magnitude of the absolute bias is dependent on measurement and instrumental characteristics. The relative bias, however, depends on the relative isotopic abundances of the sample. The use of an electron multiplier equipped with an energy filter may eliminate or diminish peak tailing effects. Measurement of the abundance sensitivity of the instrument may be used to ensure that such biases are negligible, or may be used to bias correct the minor isotope ratios.1.4 The values stated in SI units are to be regarded as standard. When non-SI units are provided in parentheses, they are for information only.1.5 This standard may involve the use of hazardous materials and equipment. This standard does not purport to address all the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and to determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 843元 / 折扣价: 717 加购物车

在线阅读 收 藏

5.1 In the United States, high sulfur content distillate products and diesel fuel used for off-road purposes, other than aviation turbine fuel, are required to contain red dye. A similar dye requirement exists for tax-free distillates. Contamination of aviation turbine fuel by small quantities of red dye has occurred. Such contamination presents major problems because airframe and engine manufacturers have severely limited operation on aviation turbine fuel containing red dye.5.2 An alternate methodology for the determination of the presence of red dye in aviation turbine fuel is the observation of the color of the fuel when placed in a white bucket. The presence of the dye can be masked in aviation turbine fuels having dark Saybolt color. This test method provides an objective means of quickly measuring red dye concentration, but to avoid confusion with trace levels of other materials which will be indicated by the instrument, the method requires that instrument readings below 0.026 mg/L be reported as No Dye Present.5.3 The color of the base fuel is masked by the presence of the red dye. This test method provides a means of estimating the base color of aviation turbine fuel and kerosine in the presence of red dye.1.1 This test method covers the determination of the red dye concentration of aviation turbine fuel and kerosine and the estimation of the Saybolt color of undyed and red dyed (<0.750 mg/L of Solvent Red 26 equivalent) aviation turbine fuel and kerosine. The test method is appropriate for use with aviation turbine fuel and kerosine described in Specifications D1655 and D3699. Red dye concentrations are determined at levels equivalent to 0.026 mg/L to 0.750 mg/L of Solvent Red 26 in samples with Saybolt colors ranging from +30 to –16. The Saybolt color of the base fuel for samples dyed red with concentration levels equivalent to 0.026 mg/L to 0.750 mg/L of Solvent Red 26 is estimated in the Saybolt Color range +30 to –16. The Saybolt Color for undyed samples is estimated in the Saybolt color range from +30 to –16.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The test method provides a relatively simple method for determination of the concentration of RDP without the need for specialty equipment built expressly for such purposes.5.2 Using this test method will afford investigators of radon in dwellings a technique by which the RDP can be determined. The use of the results of this test method are generally for diagnostic purposes and are not necessarily indicative of results that might be obtained by longer term measurement methods.5.3 An improved understanding of the frequency of elevated radon in buildings and the health effect of exposure has increased the importance of knowledge of actual exposures. The measurement of RDP, which are the direct cause of potential adverse health effects, should be conducted in a manner that is uniform and reproducible; it is to this end that this test method is addressed.1.1 This test method provides instruction for using the grab sampling filter technique to determine accurate and reproducible measurements of indoor radon decay product (RDP) concentrations and of the working level (WL) value corresponding to those concentrations.1.2 Measurements made in accordance with this test method will produce RDP concentrations representative of closed-building conditions. Results of measurements made under closed-building conditions will have a smaller variability and are more reproducible than measurements obtained when building conditions are not controlled. This test method may be utilized under non-controlled conditions, but a greater degree of variability in the results will occur. Variability in the results may also be an indication of temporal variability present at the sampling site.1.3 This test method utilizes a short sampling period and the results are indicative of the conditions only at the place and time of sampling. The results obtained by this test method are not necessarily indicative of longer terms of sampling and should not be confused with such results. The averaging of multiple measurements over hours and days can, however, provide useful screening information. Individual measurements are generally obtained for diagnostic purposes.1.4 The range of the test method may be considered from 0.0005 WL to unlimited working levels, and from 40 Bq/m3 to unlimited for each individual radon decay product.1.5 This test method provides information on equipment, procedures, and quality control. It provides for measurements within typical residential or building environments and may not necessarily apply to specialized circumstances, for example, clean rooms.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See Section 9 for additional precautions1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Knowledge of the limiting oxygen (oxidant) concentration is needed for safe operation of some chemical processes. This information may be needed in order to start up or operate a reactor while avoiding the creation of flammable gas compositions therein, or to store or ship materials safely. NFPA 69 provides guidance for the practical use of LOC data, including the appropriate safety margin to use.5.2 Examples of LOC data applications can be found in references (3-5).NOTE 2: The LOC values reported in references (6-8), and relied upon by a number of modern safety standards (such as NFPA 69 and NFPA 86) were obtained mostly in a 5-cm diameter flammability tube. This diameter may be too small to mitigate the flame quenching influence impeding accurate determination of the LOC of most fuels. The 4-L minimum volume specified in Section 7 would correspond to a diameter of at least 20 cm. As a result, some LOC values determined using these test methods are approximately 1.5 vol % lower than the previous values measured in the flammability tube, and are more appropriate for use in fire and explosion hazard assessment studies.5.3 Much of the previous literature LOC data (6-8) were measured in the flammability tube.5.4 Accepted LOC values (when nitrogen is the inert gas) determined for the five reference gases using these test methods in 20-L and 120-L test enclosures have been reported in Zlochower (9), and are summarized below:Hydrogen—4.6 % in 120-L, 4.7 % in 20-LCarbon Monoxide—5.1 % in 120-LMethane—11.1 % in 120-L, 10.7 % in 20-LEthylene—8.5 % in 120-L, 8.6 % in 20-LPropane—10.7 % in 120-L, 10.5 % in 20-LNOTE 3: For carbon monoxide, results are sensitive to the humidity of the test mixture in the enclosure. Presence of a small concentration of water vapor facilitates combustion and promotes flame propagation by supplying the hydrogen (H) and hydroxyl (OH) free radicals for the chain branching reactions. For conservative results, provisions are made to humidify the test air to near saturation.5.5 These test methods are often used to determine the LFL (lower flammability limit) and UFL (upper flammability limit) of gases and vapors initially at or near atmospheric pressure. Accepted LFL and UFL values determined for the five reference gases using these test methods have been reported in Zlochower (9).5.6 These test methods are also used to determine the maximum content of flammable gas which, when mixed with specified inert gas, is not flammable in air (ISO 10156, CGA P-23).5.7 A minimum purity of 99 % is recommended for the standard reference gases used for the commissioning (qualification) of the test apparatus and for the periodic verification of data quality.1.1 These test methods cover the determination of the limiting oxygen (oxidant) concentration of mixtures of oxygen (oxidant) and inert gases with flammable gases and vapors at a specified initial pressure and initial temperature.1.2 These test methods may also be used to determine the limiting concentration of oxidizers other than oxygen.1.3 Differentiation among the different combustion regimes (such as the hot flames, cool flames, and exothermic reactions) is beyond the scope of these test methods.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 These test methods should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The measurement of particulate matter and collected residue emission rates is an important test method widely used in the practice of air pollution control. Particulate matter measurements after control devices are necessary to determine total emission rates into the atmosphere.5.1.1 These measurements, when approved by national, state, provincial, or other regional agencies, are often required for the purpose of determining compliance with regulations and statutes.5.1.2 The measurements made before and after control devices are often necessary to demonstrate conformance with regulatory or contractual performance specifications.5.2 The collected residue obtained with this test method is also important in characterizing stack emissions. However, the utility of these data is limited unless a chemical analysis of the collected residue is performed.5.3 These measurements also can be used to calibrate continuous particulate emission monitoring systems by correlating the output of the monitoring instruments with the data obtained by using this test method.1.1 This test method2 covers a method for the measurement of particulate matter (dust) concentration in emission gases in the concentrations below 20 mg/m3 standard conditions, with special emphasis around 5 mg/m3.1.2 To meet the requirements of this test method, the particulate sample is weighed to a specified level of accuracy. At low dust concentrations, this is achieved by:1.2.1 Precise and repeatable weighing procedures,1.2.2 Using low tare weight weighing dishes,1.2.3 Extending the sampling time at conventional sampling rates, or1.2.4 Sampling at higher rates at conventional sampling times (high-volume sampling).1.3 This test method differs from Test Method D3685/D3685M by requiring the mass measurement of filter blanks, specifying weighing procedures, and requiring monitoring of the flue gas flow variability over the testing period. It requires that the particulate matter collected on the sample filter have a mass at least five times a positive mass difference on the filter blank. High volume sampling techniques or an extension of the sampling time may be employed to satisfy this requirement. This test method has tightened requirements on sampling temperature fluctuations and isokinetic sampling deviation. This test method has eliminated the in-stack filtration technique.1.4 This test method may be used for calibration of automated monitoring systems (AMS). If the emission gas contains unstable, reactive, or semi-volatile substances, the measurement will depend on the filtration temperature.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
101 条记录,每页 15 条,当前第 4 / 7 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页