微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The AE examination method detects structurally significant flaws in FRP structures via test loading. The damage mechanisms that are detected in FRP include resin cracking, fiber debonding, fiber pullout, fiber breakage, delamination, and secondary bond failure.5.2 Flaws in unstressed areas will not generate detectable AE.5.3 Flaws located with AE may be examined by other methods.1.1 This practice provides guidelines for acoustic emission (AE) examinations of fiberglass reinforced plastic (FRP) fan blades of the type used in industrial cooling towers and heat exchangers.1.2 This practice uses simulated service loading to determine structural integrity.1.3 This practice will detect sources of acoustic emission in areas of sensor coverage that are stressed during the course of the examination.1.4 This practice applies to examinations of new and in-service fan blades.1.5 This practice is limited to fan blades of FRP construction, with length (hub centerline to tip) of less than 3 m [10 ft], and with fiberglass content greater than 15 % by weight.1.6 AE measurements are used to detect emission sources. Other nondestructive examination (NDE) methods may be used to evaluate the significance of AE sources. Procedures for other NDE methods are beyond the scope of this practice.1.7 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The purpose of this practice is to evaluate the homogeneity of a lot of material selected as a candidate for development as a reference material or certified reference material, or for a L/B selected for some other purpose (see Appendix X1 – Appendix X4 for examples).5.2 This practice is applicable to the testing of samples taken at various stages during production. For example, continuous cast materials, ingots, rolled bars, wire, etc., could be sampled at various stages during the production process and tested.1.1 This practice is suitable for testing the homogeneity of a metal lot or batch (L/B) in solid form by spark atomic emission spectrometry (Spark-AES). It is compliant with ISO Guide 35—Certification of Reference Materials: General and Statistical Principles. It is primarily intended for use in the development of reference materials but may be used in any other application where a L/B is to be tested for homogeneity. It is designed to provide a combined study of within-unit and between-unit homogeneity of such a L/B.1.2 This practice is designed primarily to test for elemental homogeneity of a metal L/B by Spark-AES. However, it can be adapted for use with other instrumental techniques such as X-ray fluorescence spectrometry (XRF) or atomic absorption spectrometry (AAS).Note 1—This practice is not limited to elemental analysis or techniques. This practice can be applied to any property that can be measured, for example, the property of hardness as measured by the Rockwell technique.1.3 The criteria for acceptance of the test specimens must be previously determined. That is, the maximum acceptable level of heterogeneity must be determined on the basis of the intended use of the L/B.1.4 It is assumed that the analyst is trained in Spark-AES techniques including the specimen preparation procedures needed to make specimens ready for measurements. It is further assumed that the analyst is versed in and has access to computer-based data capture and analysis. The methodology of this practice is best utilized in a computer based spreadsheet.1.5 This practice can be applied to one or more elements in a specimen provided the signal-to-background ratio is not a limiting factor.1.6 This practice includes methods to correct for systematic drift of the instrument with time. (Warning—If drift occurs, erroneous conclusions will be obtained from the data analysis.)1.7 This practice also includes methods to refine estimates of composition and uncertainty through the use of a type standard or multiple calibrants.1.8 It further provides a means of reducing a nonhomogeneous set to a homogeneous subset.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Accurate elemental analysis of petroleum products and lubricants is necessary for the determination of chemical properties, which are used to establish compliance with commercial and regulatory specifications.4.2 Inductively coupled plasma-atomic emission spectrometry is one of the more widely used analytical techniques in the oil industry for multi-element analysis as evident from at least twelve standard test methods (for example, Test Methods C1111, D1976, D4951, D5184, D5185, D5600, D5708, D6130, D6349, D6357, D7040, D7111, D7303, and D7691) published for the analysis of fossil fuels and related materials. These have been briefly summarized by Nadkarni (1).54.2.1 Determination of mercury and trace metals in crude oils using atomic spectroscopic methods is discussed in Guide D8056.4.3 The advantages of using an ICP-AES analysis include high sensitivity for many elements of interest in the oil industry, relative freedom from interferences, linear calibration over a wide dynamic concentration range, single or multi-element capability, and ability to calibrate the instrument based on elemental standards irrespective of their elemental chemical forms, within limits described below such as solubility and volatility assuming direct liquid aspiration. Thus, the technique has become a method of choice in most of the oil industry laboratories for metal analyses of petroleum products and lubricants.4.4 In addition to the ICP-AES standards listed in 2.2, a new ICP-MS standard, Test Method D8110, has been issued for analysis of distillate products for multi-element determination of Al, Ca, Cu, Fe, Pb, Mg, and K.1.1 This practice covers information on the calibration and operational guidance for the multi-element measurements using inductively coupled plasma-atomic emission spectrometry (ICP-AES).1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

3.1 Degradation in sensor performance can occur due to dropping, mechanical shock while mounted on the test structure, temperature cycles, and so forth. It is necessary and desirable to have a simple measurement procedure that will check the consistency of sensor response, while holding all other variables constant.3.2 While test blocks of many different kinds have been used for this purpose for many years, an acrylic polymer rod offers the best all-around combination of suitable acoustic properties, practical convenience, ease of procurement, and low cost.3.3 Because the acoustic properties of the acrylic rod are known to depend on temperature, this practice requires that the rod, sensors, and couplant be stabilized at the same working temperature, prior to application of the practice.3.4 Attention should be paid to storage conditions for the acrylic polymer rod. For example, it should not be left in a freezing or hot environment overnight, unless it is given time for temperature stabilization before use.3.5 Properly applied and with proper record keeping, this practice can be used in many ways, such as:3.5.1 To determine when a sensor is no longer suitable for use.3.5.2 To check sensors that have been exposed to high-risk conditions such as dropping, overheating, and so forth.3.5.3 To get an early warning of sensor degradation over time.3.5.4 To obtain matched sets of sensors and preamplifiers.3.5.5 To verify sensors quickly but accurately in the field, and to assist troubleshooting when a channel does not pass a performance check.1.1 This practice is used for routinely checking the sensitivity of acoustic emission (AE) sensors. It is intended to provide a reliable, precisely specified way of comparing a set of sensors or telling whether an individual sensor's sensitivity has degraded during its service life, or both.1.2 The procedure in this practice is not a “calibration” and does not give frequency-response information.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This practice does not purport to recommend one sensor manufacturer over another nor does it imply that one type of sensor will react differently from another when using this procedure.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The chemical composition of stainless steels must be determined accurately to ensure the desired metallurgical properties. This test method is suitable for manufacturing control and inspection testing.1.1 This test method2 covers the analysis of austenitic stainless steel by spark atomic emission spectrometry for the following elements in the ranges shownElement Composition Range, %Chromium 17.0   to 23.0Nickel  7.5   to 13.0Molybdenum  0.01  to 3.0  Manganese  0.01  to 2.0  Silicon  0.01  to 0.90Copper  0.01  to 0.30Carbon  0.005 to 0.25Phosphorus  0.003 to 0.15Sulfur    0.003 to 0.0651.2 This test method is designed for the analysis of chill-cast disks or inspection testing of stainless steel samples that have a flat surface of at least 13 mm (0.5 in.) in diameter. The samples must be sufficiently massive to prevent overheating during the discharge and of a similar metallurgical condition and composition as the reference materials.1.3 One or more of the reference materials must closely approximate the composition of the specimen. The technique of analyzing reference materials with unknowns and performing the indicated mathematical corrections (typically referred to as type standardization) may also be used to correct for interference effects and to compensate for errors resulting from instrument drift. A variety of such systems are commonly used. Any of these that will achieve analytical accuracy equivalent to that reported for this test method are acceptable.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
255 条记录,每页 15 条,当前第 4 / 17 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页