5.1 Liquid penetrant examination methods indicate the presence, location, and, to a limited extent, the nature and magnitude of the detected discontinuities. This practice is intended primarily for portability and for localized areas of examination, utilizing minimal equipment, when a higher level of sensitivity than can be achieved using visible process is required. Surface roughness may be a limiting factor. If so, an alternative process such as post-emulsified penetrant should be considered, when grinding or machining is not practical.1.1 This practice2 covers procedures for fluorescent penetrant examination utilizing the solvent-removable process. It is a nondestructive testing method for detecting discontinuities that are open to the surface, such as cracks, seams, laps, cold shuts, laminations, isolated porosity, through leaks, or lack of fusion and is applicable to in-process, final, and maintenance examination. It can be effectively used in the examination of nonporous, metallic materials, both ferrous and nonferrous, and of nonmetallic materials such as glazed or fully densified ceramics and certain nonporous plastics and glass.1.2 This practice also provides a reference:1.2.1 By which a fluorescent penetrant examination solvent-removable process recommended or required by individual organizations can be reviewed to ascertain its applicability and completeness.1.2.2 For use in the preparation of process specifications dealing with the fluorescent solvent-removable liquid penetrant examination of materials and parts. Agreement by the purchaser and the manufacturer regarding specific techniques is strongly recommended.1.2.3 For use in the organization of the facilities and personnel concerned with the liquid penetrant examination.1.3 This practice does not indicate or suggest standards for evaluation of the indications obtained. It should be pointed out, however, that indications must be interpreted or classified and then evaluated. For this purpose there must be a separate code or specification or a specific agreement to define the type, size, location, and direction of indications considered acceptable, and those considered unacceptable.1.3.1 The user is encouraged to use materials and processing parameters necessary to detect conditions of a type or severity which could affect the evaluation of the product.1.4 All areas of this document may be open to agreement between the cognizant engineering organization and the supplier, or specific direction from the cognizant engineering organization.1.5 Units—The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
1.1 This specification covers solvent cement for joining acrylonitrile-butadiene styrene (ABS) plastic pipe and fittings for pressure and nonpressure systems.1.2 Recommendation for using solvent cement for joining acrylonitrile-butadiene-styrene (ABS) plastic pipe and fittings is given in Appendix X1. Satisfactory joining of pipe and fittings cannot be made in the presence of water, as water destroys the bonding ability of solvent cement; therefore, all materials must be dry for satisfactory joining.1.3 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.4 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.5 The following safety hazards caveat pertains only to the test methods portion, Section 7, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 The use of nonreinforced geomembranes as barrier materials has created a need for a test method to evaluate the quality of chemical fusion seams produced by methods other than thermal fusion. This test method is used for quality control purposes and is intended to provide quality control and quality assurance personnel with a method to evaluate seam quality.4.2 This test method utilizes two methods of sampling and specimen preparation for the purpose of providing a method of specimen preparation when overlapping of the seam does or does not produce a flap suitable for testing purposes.1.1 This test method describes destructive quality control and quality assurance tests used to determine the integrity of geomembrane seams produced by adhesive and chemical fusion methods. These test procedures are intended for nonreinforced geomembranes only. This test method utilizes two sampling techniques; Method A is for seams produced without a testing flap, while Method B is for seams that produce a testing flap.1.2 The rationale behind the two methods is that most seaming processes produce some type of flap on the back side or front side, or both, of the seam to perform peel testing. However, there are some processes in the industry that do not produce any type of flap to perform seam peel testing, and this is where the additional method is needed.1.3 This method is intended for use with polyvinyl chloride (PVC)-based material seams, but is not limited to PVC.1.4 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in nonconformance with the standard.1.5 Hazardous Materials—Always consult the proper Material Safety Data Sheets for any hazardous materials used for proper ventilation and protection.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 This practice is useful for preparing extracts from fire debris for subsequent analysis by gas chromatography-mass spectrometry (see Test Method E1618).4.2 This practice is useful to reduce potential fractionation during separation, such as when attempting to distinguish between various grades of fuel oil.4.3 This practice is particularly useful for extraction from nonporous surfaces such as glass, or the interior of burned containers. It is also well suited to the extraction of ignitable liquid residues from samples that are not amenable to extraction using Practice E1412.4.4 This practice lacks specificity to separate and isolate ignitable liquids from interfering compounds present in the fire debris.4.5 This practice is not suitable for the extraction of extremely volatile compounds and ignitable liquids (for example, acetone, butane, ethanol, propane, some cigarette lighter fluids), which could evaporate during the concentration step.4.6 This is a destructive technique. Whenever possible, this technique should only be used when a representative portion of the sample can be preserved for reanalysis. Those portions of the sample subjected to this procedure could be unsuitable for resampling. If sample spoliation is an issue, a nondestructive extraction technique (for example, Practices E1412, E2154) should be used prior to this technique.1.1 This practice covers the procedure for removing small quantities of ignitable liquid residue from samples of fire debris using solvent to extract the residue.1.2 This practice is suitable for extracting ignitable liquid residues over a wide range of concentrations.1.3 Alternate separation and concentration procedures are listed in the referenced documents (Practices E1388, E1412, E1413, E2154, and E3189).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 These test methods provide a means of determining the compatibility of a resin (or vehicle), at low concentrations, in a high boiling ink solvent.5.2 Resin-solvent mixtures that exhibit a high precipitation temperature are less compatible than those exhibiting a low precipitation temperature.5.3 Resin-solvent mixtures that exhibit precipitation temperatures at or close to the cloud point of the pure solvent are considered infinitely compatible or the resin is infinitely soluble in that solvent.1.1 These test methods cover the manual and automatic procedures for testing the compatibility of lithographic ink resins in high boiling ink solvents by precipitation temperature (cloud point) in a range from 35 to 210°C.1.2 The manual procedure in this test method uses laboratory equipment generally available in a normal, well-equipped laboratory. The automated procedure uses a programmable cloud point tester.1.3 This test method is for use with ink resins intended mainly for oil-based offset and letterpress inks. The type of resins are typically, but not limited to C9 aromatic hydrocarbon resins, modified dicyclopentadiene resins, rosin pentaerythritol or glycerol esters, phenolic modified rosin esters, maleic anhydride modified-rosin esters, and naturally occurring resins such as gilsonite.1.4 A resin solution or ink vehicle could also be used in this test instead of the resin.1.5 The typical high boiling solvents to be used are C12 to C16 petroleum distillates.1.6 To avoid fire or injury, this test method should not be used with low flash point solvents such as toluene or xylene. The minimum flash point of the solvents used should be 60°C as determined by Test Method D56.NOTE 1: Users of this test method should be aware that the flash point of many solvents used for this test (as defined in Test Methods D56 and D1310) is exceeded in the heating cycle of this test method. Safety precautions should be taken since there is the potential for vapor ignition. The method outlined should be done in a shielded exhaust hood, where there is access to a fire extinguisher if needed.1.7 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
This specification covers requirements for solvent cements for chlorinated poly(vinyl chloride) (CPVC) plastic pipe, tubing, and socket-type fittings. Solvent cement shall be a CPVC resin-based solution, shall be free-flowing, shall show no gelation or stratification, and shall not contain lumps or any foreign matter. Other requirements include resin content, dissolution, viscosity, shelf stability, hydrostatic burst strength, and hydrostatic sustained pressure strength. Test procedures for solid contents, inert filler determination, viscosity, hydrostatic burst strength, and hydrostatic sustained pressure strength are included in this specification.1.1 This specification provides requirements for chlorinated poly(vinyl chloride) (CPVC) solvent cements to be used in joining chlorinated poly(vinyl chloride) pipe, tubing, and socket-type fittings.1.2 CPVC solvent cements are used with CPVC 41 chlorinated poly(vinyl chloride) pipe, tubing, and fittings, which meet Class 23447 as defined in Specification D1784.1.3 A recommended procedure for joining CPVC pipe and fittings is given in Appendix X1. See also Practices F3328 and D2855.1.4 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 The following safety hazards caveat pertains only to the test methods portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车