微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Values of density and relative density are used for converting volumes to units of mass as required in other ASTM standards and in sales transactions.1.1 This test method covers the determination of density and relative density by pycnometer, and can be used for pitch that can be handled in fragments.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 The density/unit weight of a cohesionless soil may be determined by various in-place methods in the field or by the measurement of physical dimensions and masses by laboratory soil specimens. The dry density/unit weight of a cohesionless soil does not necessarily, by itself, reveal whether the soil is loose or dense.5.2 Relative density/unit weight expresses the degree of compactness of a cohesionless soil with respect to the loosest and densest condition as defined by standard laboratory procedures. Only when viewed against the possible range of variation, in terms of relative density/unit weight, can the dry density/unit weight be related to the compaction effort used to place the soil in a compacted fill or indicate volume change and stress-strain tendencies of soil when subjected to external loading.5.3 An absolute minimum density/unit weight is not necessarily obtained by these test methods.NOTE 1: In addition, there are published data to indicate that these test methods have a high degree of variability.4 However, the variability can be greatly reduced by careful calibration of equipment, and careful attention to proper test procedure and technique.5.4 The use of the standard molds (6.2.1) has been found to be satisfactory for most soils requiring minimum index density/unit weight testing. Special molds (6.2.2) shall only be used when the test results are to be applied in conjunction with design or special studies and there is not enough soil to use the standard molds. Such test results should be applied with caution, as minimum index densities/unit weights obtained with the special molds may not agree with those that would be obtained using the standard molds.NOTE 2: The quality of the result produced by this standard is dependent on the competence of the personnel performing it, and the suitability of the equipment and facilities used. Agencies that meet the criteria of Practice D3740, generally, are considered capable of competent and objective testing/sampling/inspection/etc. Users of this standard are cautioned that compliance with Practice D3740 does not in itself assure reliable results. Reliable results depend on many factors; Practice D3740 provides a means of evaluating some of those factors.1.1 These test methods cover the determination of the minimum-index dry density/unit weight of cohesionless, free-draining soils. The adjective “dry” before density or unit weight is omitted in the title and remaining portions of this standards to be be consistent with the applicable definitions given in Section 3 on Terminology.1.2 System of Units: 1.2.1 The testing apparatus described in this standard has been developed and manufactured using values in the gravimetric or inch-pound system. Therefore, test apparatus dimensions and mass given in inch-pound units are regarded as the standard.1.2.2 It is common practice in the engineering profession to concurrently use pounds to represent both a unit of mass (lbm) and a unit of force (lbf). This implicitly combines two separate systems of units; that is, the absolute system and the gravitational system. It is scientifically undesirable to combine the use of two separate sets of inch-pound units within a single standard. This test method has been written using the gravitational system of units when dealing with the inch-pound system. In this system, the pound (lbf) represents a unit of force (weight). However, balances or scales measure mass; and weight must be calculated. In the inch-pound system, it is common to assume that 1 lbf is equal to 1 lbm. While reporting density is not regarded as nonconformance with this standard, unit weights should be calculated and reported since the results may be used to determine force or stress.1.2.3 The terms density and unit weight are often used interchangeably. Density is mass per unit volume, whereas unit weight is force per unit volume. In this standard, density is given only in SI units. After the density has been determined, the unit weight is calculated in SI or inch-pound units, or both.1.3 Three alternative methods are provided to determine the minimum index density/unit weight, as follows:1.3.1 Method A—Using a funnel pouring device or a hand scoop to place material in mold.1.3.2 Method B—Depositing material into a mold by extracting a soil filled tube.1.3.3 Method C 2—Depositing material by inverting a graduated cylinder.1.4 The method to be used should be specified by the agency requesting the test. If no method is specified, the provisions of Method A shall govern. Test Method A is the preferred procedure for determining minimum index density/unit weight as used in conjunction with the procedures of Test Methods D4253. Methods B and C are provided for guidance of testing used in conjunction with special studies, especially where there is not enough material available to use a 0.100 ft3 (2830 cm3) or 0.500 ft3 (14 200 cm3) mold as required by Method A.1.5 These test methods are applicable to soils that may contain up to 15 %, by dry mass, of soil particles passing a No. 200 (75-μm) sieve, provided they still have cohesionless, free-draining characteristics (nominal sieve dimensions are in accordance with Specification E11).1.5.1 Method A is applicable to soils in which 100 %, by dry mass, of soil particles pass a 3-in. (75-mm) sieve and which may contain up to 30 %, by dry mass, of soil particles retained on a 11/2-inch (37.5-mm) sieve.1.5.2 Method B is applicable to soils in which 100 %, by dry mass, of soil particles pass a 3/4-inch (19.0-mm) sieve.1.5.3 Method C is applicable only to fine and medium sands in which 100 %, by dry mass, of soil particles pass a 3/8-in. (9.5-mm) sieve and which may contain up to 10 %, by dry mass, of soil particles retained on a No. 10 (2.00-mm) sieve.1.5.4 Soils, for the purposes of these test methods, shall be regarded as naturally occurring cohesionless soils, processed particles, or composites or mixtures of natural soils, or mixtures of natural and processed particles, provided they are free-draining.1.6 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.6.1 For purposes of comparing a measured or calculated value(s) to specified limits, the measured or calculated value(s) shall be rounded to the nearest decimal or significant digits in the specified limits.1.6.2 The procedures used to specify how data are collected/recorded or calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that generally should be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering design.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 590 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property which can be used in conjunction with other properties to characterize pure hydrocarbons and their mixtures.5.2 This test method was originally developed for the determination of the density of the ASTM Knock Test Reference Fuels n-heptane and isooctane, with an accuracy of 0.00003 g/mL. Although it is no longer employed extensively for this purpose, this test method is useful whenever accurate densities of pure hydrocarbons or petroleum fractions with boiling points between 90 °C and 110 °C are required.1.1 This test method covers the measurement of the density of pure hydrocarbons or petroleum distillates boiling between 90 °C and 110 °C that can be handled in a normal fashion as a liquid at the specified test temperatures of 20 °C and 25 °C.1.2 This test method provides a calculation procedure for the conversion of density to relative density (specific gravity).1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific warning statements are given in Section 7.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Density is a fundamental physical property that can be used in conjunction with other properties to characterize both the light and heavy fractions of petroleum and to assess the quality of crude oils.5.2 Determination of the density or relative density of petroleum and its products is necessary for the conversion of measured volumes to volumes at the standard temperatures of 15 °C.5.3 The determination of densities at the elevated temperatures of 40 °C and 100 °C is particularly useful in providing the data needed for the conversion of kinematic viscosities in mm2/s (centistokes) to the corresponding dynamic viscosities in mPa·s (centipoises).1.1 This test method covers two procedures for the measurement of the density of materials which are fluid at the desired test temperature. Its application is restricted to liquids of vapor pressures below 80 kPa (600 mm Hg) and viscosities below 40 000 mm2/s (cSt) at the test temperature. The method is designed for use at any temperature between 20 °C and 100 °C. It can be used at higher temperatures; however, in this case the precision section does not apply.NOTE 1: For the determination of density of materials which are fluid at normal temperatures, see Test Method D1217.1.2 This test method provides a calculation procedure for converting density to specific gravity.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

定价: 156元 / 折扣价: 133 加购物车

在线阅读 收 藏

5.1 Density and specific gravity are cornerstone terms that help define many useful properties of wood and wood-based materials. These terms designate concepts that have distinct definitions though they relate to the same characteristic (mass in a unit volume). Generally, in the US and Canada, density of wood is measured in terms of specific gravity, or relative density. In the wood-based composites industry and internationally the term density is often preferred.5.2 The basic density and basic specific gravity of wood are used in the forestry industry for calculating the oven-dry weight of wood fiber contained in a known wood volume of various wood species. Thus, it serves as an indicator of the amount of wood pulp that could be produced, the workability of the material or its shipping weight. This information is referenced in various resources, including Wood Handbook.5 Note that specific gravity varies within a tree, between trees, and between species. Since the specific gravity of wood cell wall substance is practically constant for all species (approximately 1.53), it is apparent that individual specific gravity value is indicative of the amount of wood cell wall substance present. It affords a rapid and valuable test method for selection of wood for specific uses. In US and Canadian building codes, the oven-dry specific gravity is correlated to various strength characteristics of wood products (for example, compression perpendicular to grain, shear strength and fastener holding capacity).5.3 It is often desirable to know the density or specific gravity of a living tree, a structural member already in place, a log cross section, a segment of a research element, or the earlywood or latewood layer. Therefore, it is possible that specimens will be large or small, regular or irregular in shape, and at a variety of moisture contents. These test methods give procedures that include all of these variables and provides for calculation of density and specific gravity values to degrees of precision generally needed.5.4 In the wood-based composites industry, the product density or specific gravity also provides an important indicator of potential product attributes. For wood-based materials, the same test methods are used; however, the measurements typically combine the mass from the wood substance with any resin, wax, or other solid additives present in the material. These properties are not to be confused with equivalent specific gravity of structural composite lumber used to characterize its fastener-holding capacity determined in accordance with Specification D5456.1.1 These test methods cover the determination of the density and specific gravity (relative density) of wood and wood-based materials to generally desired degrees of accuracy and for specimens of different sizes, shapes, and moisture content conditions. The test method title is indicative of the procedures used or the specific area of use.  SectionTest Method A—Volume by Measurement 8Test Method B—Volume by Water Immersion 9Test Method C—Flotation Tube 10Test Method D—Forstner Bit 11Test Method E—Increment Core 12Test Method F—Chips 13Test Method G—Full-Size Members 141.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The measured mean bulk density of a coal stockpile is used with a measurement of the stockpile volume per Test Method D6172. Procedures to determine the quantity of stockpiled coal. This measure of quantity is often used as a reference value for adjusting inventory records.1.1 This test method covers procedures for determining the bulk density of coal using instrumentation that measures the relative backscatter of nuclear gamma radiation throughout the depth of the stockpile under test.1.2 This procedure is applicable to all ranks of coal.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. The equipment uses radioactive materials, which may be hazardous to the health of users, unless proper precautions are taken.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 Accurate determination of the density, relative density (specific gravity), or API gravity of petroleum and its products is necessary for the conversion of measured volumes to volumes or masses, or both, at the standard reference temperatures of 15 °C or 60 °F during custody transfer.5.2 This procedure is most suitable for determining the density, relative density (specific gravity), or API gravity of low viscosity transparent liquids. This procedure can also be used for viscous liquids by allowing sufficient time for the hydrometer to reach temperature equilibrium, and for opaque liquids by employing a suitable meniscus correction. Additionally for both transparent and opaque fluids the readings shall be corrected for the thermal glass expansion effect and alternative calibration temperature effects before correcting to the reference temperature.5.3 When used in connection with bulk oil measurements, volume correction errors are minimized by observing the hydrometer reading at a temperature close to that of the bulk oil temperature.5.4 Density, relative density, or API gravity is a factor governing the quality and pricing of crude petroleum. However, this property of petroleum is an uncertain indication of its quality unless correlated with other properties.5.5 Density is an important quality indicator for automotive, aviation and marine fuels, where it affects storage, handling and combustion.1.1 This test method covers the laboratory determination using a glass hydrometer in conjunction with a series of calculations, of the density, relative density, or API gravity of crude petroleum, petroleum products, or mixtures of petroleum and nonpetroleum products normally handled as liquids, and having a Reid vapor pressure of 101.325 kPa (14.696 psi) or less. Values are determined at existing temperatures and corrected to 15 °C or 60 °F by means of a series of calculations and international standard tables.1.2 The initial hydrometer readings obtained are uncorrected hydrometer readings and not density measurements. Readings are measured on a hydrometer at either the reference temperature or at another convenient temperature, and readings are corrected for the meniscus effect, the thermal glass expansion effect, alternative calibration temperature effects and to the reference temperature by means of the Petroleum Measurement Tables; values obtained at other than the reference temperature being hydrometer readings and not density measurements.1.3 Readings determined as density, relative density, or API gravity can be converted to equivalent values in the other units or alternative reference temperatures by means of Interconversion Procedures (API MPMS Chapter 11.5), or Adjunct to D1250 Guide for Petroleum Measurement Tables (API MPMS Chapter 11.1), or both, or tables, as applicable.1.4 The initial hydrometer readings determined in the laboratory shall be recorded before performing any calculations. The calculations required in Section 10 shall be applied to the initial hydrometer reading with observations and results reported as required by Section 11 prior to use in a subsequent calculation procedure (ticket calculation, meter factor calculation, or base prover volume determination).1.5 Annex A1 contains a procedure for verifying or certifying the equipment for this test method.1.6 The values stated in SI units are to be regarded as standard.1.6.1 Exception—The values given in parentheses are provided for information only.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
789 条记录,每页 15 条,当前第 5 / 53 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页