微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This practice is significant for determining performance relative to ideal sampling conventions. The purposes are multifold:5.1.1 The conventions have a recognized tie to health effects and can easily be adjusted to accommodate new findings.5.1.2 Performance criteria permit instrument designers to seek practical sampler improvements.5.1.3 Performance criteria promote continued experimental testing of the samplers in use with the result that the significant variables (such as wind speed, particle charge, etc.) affecting sampler operation become understood.5.2 One specific use of the performance tests is in determining the efficacy of a given candidate sampler for application in regulatory sampling. The accuracy of the candidate sampler is measured in accordance with the evaluation tests given here. A sampler may then be adopted for a specific application if the accuracy is better than a specific value.NOTE 1: In some instances, a sampler so selected for use in compliance determinations is specified within an exposure standard. This is done so as to eliminate differences among similar samplers. Sampler specification then replaces the respirable sampling convention, eliminating bias (3.2.6), which then does not appear in the uncertainty budget.5.3 Although the criteria are presented in terms of accepted sampling conventions geared mainly to compliance sampling, other applications exist as well. For example, suppose that a specific aerosol diameter-dependent health effect is under investigation. Then for the purpose of an epidemiological study an aerosol sampler that reflects the diameter dependence of interest is required. Sampler accuracy may then be determined relative to a modified sampling convention.1.1 This practice covers the evaluation of the performance of personal samplers of non-fibrous respirable aerosol. The samplers are assessed relative to a specific respirable sampling convention. The convention is one of several that identify specific particle size fractions for assessing health effects of airborne particles. When a health effects assessment has been based on a specific convention it is appropriate to use that same convention for setting permissible exposure limits in the workplace and ambient environment and for monitoring compliance. The conventions, which define inhalable, thoracic, and respirable aerosol sampler ideals, have now been adopted by the International Standards Organization (ISO 7708), the Comité Européen de Normalisation (CEN Standard EN 481), and the American Conference of Governmental Industrial Hygienists (ACGIH, Ref (1)),2 developed (2) in part from health-effects studies reviewed in Ref (3) and in part as a compromise between definitions proposed in Refs (3, 4).1.2 This practice is complementary to Test Method D4532, which specifies a particular instrument, the 10-mm cyclone.3 The sampler evaluation procedures presented in this practice have been applied in the testing of the 10-mm cyclone as well as the Higgins-Dewell cyclone.3 ,4 Details on the evaluation have been published (5-7) and can be incorporated into revisions of Test Method D4532.1.3 A central aim of this practice is to provide information required for characterizing the uncertainty of concentration estimates from samples taken by candidate samplers. For this purpose, sampling accuracy data from the performance tests given here can be combined with information as to analytical and sampling pump uncertainty obtained externally. The practice applies principles of ISO GUM, expanded to cover situations common in occupational hygiene measurement, where the measurand varies markedly in both time and space. A general approach (8) for dealing with this situation relates to the theory of tolerance intervals and may be summarized as follows: Sampling/analytical methods undergo extensive evaluations and are subsequently applied without re-evaluation at each measurement, while taking precautions (for example, through a quality assurance program) that the method remains stable. Measurement uncertainty is then characterized by specifying the evaluation confidence (for example, 95 %) that confidence intervals determined by measurements bracket measurand values at better than a given rate (for example, 95 %). Moreover, the systematic difference between candidate and idealized aerosol samplers can be expressed as a relative bias, which has proven to be a useful concept and is included in the specification of accuracy (3.2.13, 3.2.13.1, 3.2.13.3).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 This method is performed to evaluate if paintball barrier netting will prevent an intact paintball or shell fragments exceeding 3 by 5 mm (0.118 by 0.197 in.) from passing through the netting.4.2 This test method provides accurate results about the current effectiveness of the test specimen when field-tested in an existing installation. Laboratory results are particularly useful for testing the relative effectiveness of multiple test specimens.4.3 The results stemming from the use of this test method may be used to evaluate the effectiveness of paintball barrier netting represented by the test specimen for use in delineating “goggles-on” areas found at paintball playing fields.4.4 The base procedure outlined below is applicable to “field-testing.” Additional requirements for “laboratory” testing are noted.1.1 This test method is designed to evaluate paintball barrier netting that may be used to delineate playing fields, chronograph areas, target ranges, and other “goggle-on” areas of an active paintball site. An apparatus is suggested to evaluate paintball barrier netting in a laboratory. On site testing does not require such an apparatus.1.2 This standard is designed to be used in conjunction with Guide F2184.1.3 The values stated in SI units are to be regarded as the standard; the inch-pound units in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

3.1 A phenomenon peculiar to painted surfaces is the formation of blisters relative to some system weakness. This test method provides a standard procedure of describing the size and density of the blisters so that comparisons of severity can be made.1.1 This test method employs photographic reference standards to evaluate the degree of blistering that may develop when paint systems are subjected to conditions which will cause blistering. While primarily intended for use on metal and other nonporous surfaces, this test method may be used to evaluate blisters on porous surfaces, such as wood, if the size of blisters falls within the scope of these reference standards. When the reference standards are used as a specification of performance, the permissible degree of blistering of the paint system shall be agreed upon by the purchaser and the seller.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This guide is intended to be used by developers of standards and other documents in the field of renewable resources and green building to evaluate whether the attributes of a specific forest management system meet the intent of sustainable forest management.5.2 In addition to the attributes addressed by this document, some users may wish to impose other evaluation criteria intended to satisfy goals beyond maintaining sustained-yield and sustainable forest management. While these issues are not specifically addressed in this guide, some are discussed in Appendix X1, Commentary.1.1 This guide provides a list of criteria and indicators that have been shown to be useful in achieving the goals of a sustainable forest management plan. This guide lists a set of criteria considered to be important for the following tasks:1.1.1 To describe, assess, and evaluate progress toward sustainability of forest management at the national, regional, or individual forest level.1.1.2 To inform the policy debate at regional, national, and international levels.1.1.3 To evaluate the attributes of a forest management certification or evaluation system with a specific combination of forest management principles, practices, or adaptations, where such practices are evaluated against a set of prescribed standards. Although this guide provides a qualitative list of criteria for evaluation of forest conditions, it does not purport to recommend any specific forest management certification or evaluation system or subset of overall attributes. The guide does not replace forest certification or verification standards.1.2 This guide will require compilation of information from multiple sources across various governmental and nongovernmental agencies. For this guide to be useful, it is recommended that the information collected is in alignment with that which is already collected for other purposes; otherwise these indicators may be too great an effort to combine in a timely fashion.NOTE 1: Although this document provides general guidance applicable to forests and forest products from many countries, its initial application is expected to focus on North America.1.3 This guide cannot replace education or experience and should be used in conjunction with professional judgment such as that provided by foresters, forest scientists, and wood technologists.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

3.1 Paints, if not formulated or processed properly may settle excessively. Paint that settles excessively is difficult to reincorporate into the paint system causing time delays or valuable pigment being left in the drum. This test method is an attempt to evaluate the degree of settling caused by the accelerated Test Method D1309. This very subjective method of evaluation in conjunction with the variables of Test Method D1309 raises questions as to the usefulness of the results for specification compliance.1.1 This test method covers the determination of the degree of pigment suspension and ease of remixing a shelf-aged sample of paint to a homogeneous condition suitable for the intended use.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

3.1 Certain agencies who desire to use, store, or transport emulsified asphalt under less than ideal weather conditions may require that the product remain homogeneous (unbroken) after being subjected to a temperature of −18 °C.NOTE 1: The quality of the results produced by this standard are dependent on the competence of the personnel performing the procedure and the capability, calibration, and maintenance of the equipment used. Agencies that meet the criteria of Specification D3666 are generally considered capable of competent and objective testing, sampling, inspection, etc. Users of this standard are cautioned that compliance with Specification D3666 alone does not completely ensure reliable results. Reliable results depend on many factors; following the suggestions of Specification D3666 or some similar acceptable guideline provides a means of evaluating and controlling some of those factors.1.1 Emulsified asphalt is normally damaged by freezing temperatures, but specially formulated materials are expected to pass this practice.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 The text of this standard references notes and footnotes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Latex paints are sometimes applied over substrates that contain a high level of water-soluble salts that results in efflorescence. This practice evaluates a coating’s vulnerability to efflorescence.1.1 This practice covers the evaluation of the degree to which a latex paint resists the formation of efflorescence and alkali burnout on the exposed paint surface.1.2 This practice is designed primarily to relate efflorescence originating in the substrate to the deposit appearing on the surface of latex paints. This practice relates chiefly to the painting of masonry-type substrates such as concrete block, brick, mortar, stucco, poured concrete, and similar materials.1.3 The values in SI units are to be regarded as the standard. The values in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Hydraulic fluid compatibility is important to hydraulic equipment users because a mixture of incompatible fluids may produce a substance that is markedly inferior to its constituents. Even in identical base stocks, the formation of a precipitate may occur as a result of additive interactions. In this practice, compatibility will be determined using ISO 13357-1 filterability test method. Since hydraulic systems utilize fine-filtration to protect components from wear, incompatibility often exhibits itself as premature filter plugging.5.2 Because of such occurrences, suppliers recommend evaluating the compatibility of hydraulic fluids prior to mixing. A flowchart is provided in Annex A1 to aid in interpretation of the test results and hydraulic system conversion.5.3 Although new hydraulic fluids may be compatible, in-service fluid of the same type may be degraded or contaminated to such an extent that the new fluid added may not be compatible with the system fluid. In-service fluid compatibility with new fluid additions should be evaluated on a case by case basis.5.4 The oxidation resistance and wear protection of different fluids of the same type can vary widely, and compatibility does not imply equivalent performance.1.1 This practice covers the compatibility of mixtures of hydraulic fluids as defined by Specifications D6158, DIN 51524, ISO 11158, and ISO 15380.1.2 This practice can be used to evaluate new (unused) lubricant compatibility or the effects of combining new (replacement) lubricant with in-service (original) lubricant in the system.1.3 To evaluate primary compatibility using this method, the replacement fluid must pass the ISO 13357-1 Stage II filterability test. The original fluid is not required to pass ISO 13357-1 filterability test, Stage I or II.1.4 Primary testing is conducted on fluid mixtures in 2:98, 10:90, and 50:50 ratios using the ISO 13357-1 Filterability Test, Stage II.1.5 Secondary testing is suggested when circumstances indicate the need for additional testing.1.6 This practice does not evaluate the wear prevention characteristics, load carrying capacity, or the mechanical shear stability of lubricant mixtures while in service. If anti-wear (AW), extreme pressure (EP), or shear stability are to be evaluated, further testing of these parameters may be required.1.7 This practice does not purport to cover all test methods that could be employed.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

定价: 927 加购物车

在线阅读 收 藏

4.1 Decellularization is used in the preparation of medical products that make use of the native structure and/or composition of the extracellular matrix derived from a specific tissue source. Upon implantation or placement, the decellullarized product is commonly intended to undergo and/or induce constructive remodeling and incorporation into the native host tissue instead of being recognized as foreign material. Typically, immune system recognition of foreign material leads to encapsulation of the material and an aggressive inflammatory response, causing the ultimate rejection or other failure of the product.4.2 As described above, decellularization is a recognized technique which allows the use of ECM-derived products in medical treatments with a reduced risk of an adverse host immune response and immune rejection by disrupting and removing cells and/or cell contents while aiming to preserve significant features of the ECM structure and/or composition. More complete decellularization is often associated with a beneficial response (1, 2)6 but can also be associated with the loss of important ECM components and the loss of structural or biomechanical integrity from the tissue during the decellularization process (3, 4, 5, 6). Therefore, given the typical objective of producing a product that does not elicit an adverse immune response while maintaining the integrity of the tissue for its intended surgical application, this guide presents a standard approach to the evaluation of decellularization processes, including assessment of adequate decellularization to achieve this end.4.3 An ideal decellularization process would completely remove source tissue cells and associated cellular content from a tissue or organ, while minimizing unwanted effects on the remaining ECM. However, a more widely encountered and practical representation of an optimized decellularization process exhibits partial removal and/or disruption of resident cells and cellular material to levels within a set of product-specific ranges (acceptance criteria). This guide is intended to aid in evaluating a decellularization process through the mechanisms and extent of decellularization and any potential impacts on the remaining dECM.4.4 This standard provides a guide to the following steps in evaluating an extracellular matrix decellularization process:4.4.1 Selecting attributes and test methods for characterization (Section 5)4.4.2 Developing decellularization acceptance criteria for selected attributes (Section 6)4.4.3 Documenting and analyzing the decellularization process flow (Section 7)4.4.4 Performing a characterization of the decellularization process by testing decellularized ECM materials using the selected attributes, methods, and acceptance criteria (Section 8)4.5  Decellularization processes vary widely in practice, utilizing a variety of reagents, temperatures, pressures, and/or mechanical forces in parallel and/or in sequence. While any one factor may act through consistent mechanisms, its effect will vary according to the decellularization process in its entirety as well as the particular tissue structure. As such, each part of a decellularization process should be understood and analyzed within the context of the complete process sequence and its action upon the type of tissue. For example, a process developed for dermis will likely not translate directly to a heart valve and the doubling of process time will affect each process differently, so the decellularization process will have to be adjusted to account for the difference in tissue properties and desired attributes at the conclusion of the process. Within the context of this guide, analysis of a processing step should not suggest material testing. Analysis is meant to demonstrate an understanding of the relevant mechanisms of decellularization and the relevant mechanisms of adverse effects on the ECM material.4.6 Decellularization acceptance criteria and ECM integrity acceptance criteria should be developed based on the intended use of the dECM material. This guide suggests some considerations that should be used to develop and justify acceptance criteria.4.6.1 Decellularization acceptance criteria already established for a source ECM and decellularization process allow for controlled changes to the decellularization process. Significant changes include changes to the processing mechanisms, reagents/materials, reagent concentrations, and controls as well as changes in source ECM materials. Prior to any significant change to a decellularization process, a decellularization process analysis should be conducted on the process steps which are subject to change. In addition, testing against the established decellularization acceptance criteria should be conducted on dECM material produced with the proposed process changes. A risk management process may then be utilized to ensure that any risks associated with the proposed changes are acceptable.4.7 Measurements of decellularization attributes using the source extracellular matrix material as a reference can provide a valuable frame of reference and determination of percent change for exploratory and informational purposes. However, acceptance criteria based on percent change from the source material are more prone to variability in the final product due to variability in the source material. Acceptance criteria based on measurements of the dECM alone are more stable and simpler to implement.4.7.1 The preparation of decellularized medical products involves variability originating in the source material as well as the processing; both types of variability can affect the consistency of the end product (dECM) and its performance in meeting predetermined acceptance criteria. A complete characterization of a decellularization process will include statistical ranges for each measured attribute. Statistical correlations may be explored to connect variation in source material and processing to end product attributes. These correlations can help prioritize source material and process controls to address uncontrolled variability.1.1 This document provides guidance on the characterization and evaluation of the decellularization processes used to produce decellularized extracellular matrix (dECM) materials which will be used as medical products in direct or indirect contact with the body. The decellularization process may be performed on tissue from human or other mammalian sources or produced in vitro from human or other mammalian cells. The dECM may or may not be recellularized prior to use. Decellularized ECM material derived from non-mammalian tissue or cells and decellularized ECM material used for non-medical purposes may follow the framework provided but may require additional considerations outside the scope of this document.1.2 Biological tissues are composed of a structural extracellular matrix (ECM) and embedded cells. The intent of a decellularization process is to disrupt and/or remove cells and cellular components from an ECM material while maintaining key structural and/or compositional properties of the material. Decellularization comprises process steps intended or expected to result or aid in the disruption of source tissue cells and/or removal of cellular content from the material undergoing decellularization. Actions that are intended to rinse or otherwise remove decellularization reagents or by-products should also be considered in that context as part of the decellularization process. Purifications or other isolations of specific ECM components are not considered decellularization and are outside the scope of this document.1.3 This document describes relevant parameters of decellularization processes used to prepare extracellular matrix materials as medical products.1.4 This document provides guidance on the measurement of specific and general properties of dECM. This includes both the analysis of cellular material as well as the assessment of the effects of decellularization on dECM properties such as composition, structure, and material properties.1.5 This document does not provide guidance on the assessment of the host response subsequent to the implantation or other in vivo placement of dECM medical products. Such assessments should instead be conducted as part of biocompatibility studies or other safety and efficacy studies. At a minimum it is recommended that the finished product composed of dECM material shall be assessed in a relevant model that represents the biological responses that the product is expected to experience to ensure that the final material is functioning in accordance with design intentions. An in vivo model will generally be used, but cellular or ex vivo models may also be satisfactory when appropriate.1.6 This document provides guidance on determining pertinent quality attributes as well as developing and assessing acceptance criteria related to ensuring the consistent evaluation and use of decellularization in manufacturing medical products. Acceptance criteria should address the adequacy of cellular disruption and removal of cellular remnants. Acceptance criteria should define acceptable levels for retention of extracellular matrix components. Acceptance criteria may place limits on damage to retained components. Acceptance criteria should place limits on the persistence of decellularization reagents. This document also provides recommendations on developing process parameters and associated process controls.1.6.1 This guide recommends attributes as representative measures of decellularization in the direct function of removing cells and cell components. These attributes can also be used to show process consistency, capability, or equivalency. Recommendation of these attributes does not confer additional significance related to product safety and performance.1.6.2 No consensus has been established regarding decellularization thresholds or classifications. This guide therefore cannot suggest acceptance criteria and instead recommends commonly measured attributes to develop acceptance criteria specific to the design of each unique material and its intended use.1.7 Decellularized products will require evidence of safety and/or efficacy beyond that related to evaluating the decellularization process. Commonly referenced standards include the ISO 10993 series (see ISO 10993-1) for biocompatibility of medical devices and the ISO 22442 series for medical devices utilizing animal tissues and their derivatives. These assessments are not in the scope of this document, though they may help to identify relevant functional characteristics and test methods as discussed in 5.2.9.1.8 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

定价: 590 加购物车

在线阅读 收 藏
679 条记录,每页 15 条,当前第 5 / 46 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页