5.1 This practice allows for compositional analysis of the gases in equilibrium with crude oil, condensate, and liquid petroleum products at a 4:1 vapor/liquid ratio at ambient temperature for analysis using typical instrumentation (RGA) already available in typical refinery laboratories. These highly volatile components can result in vapor pressure conditions above atmospheric pressure, so this mechanically simple system is easily adaptable to day-to-day application at low cost/effort using existing analytical equipment.5.2 This practice allows for compositional analysis and day-to-day tracking or trending of the light hydrocarbons in crude oil for the purpose of identifying unusual blending of NGL, LPG, butane etc. into individual crude oil batch receipts.5.3 This practice allows identification of gases: including: CO, CO2, H2, H2S, N2, O2, CH4, C2H6, C3H8, etc. that can contribute to vapor pressure by Test Method D6377, but are not identified using Test Method D8003 (see Note 1). These components can originate from production or can be the result of the use of pad gas and may not be native to the original product. Significant difference in Test Method D6377 vapor pressure measurements at low V/L (for example, 0.1:1) versus high V/L (for example, 4:1) indicate the contribution of high vapor pressure gases such as those in 5.2.NOTE 1: Test Method D8003 does identify: CH4, C2H6, and C3H8. Test Method D8003 does not identify: CO, CO2, H2, H2S, N2, and O2.5.4 Nitrogen and combustion gases (mostly nitrogen and CO2 with minor concentrations of air) at positive pressures up to 2500 mm water column (nominal 4 psig) is required by International Marine Organization (IMO) Marine Pollution (MARPOL) and Safety of Life at Sea (SOLAS) regulations for the marine transport of crude oil. Analysis of the equilibrium vapor may be required to determine the contribution of inert gases to the total vapor pressure of the crude oil on receipt at the discharge port or refinery.1.1 This practice covers the preparation of an equilibrium gas sample of live crude oil, condensate, or liquid petroleum products, using a Practice D8009 manual piston cylinder (MPC) as a vapor tight expansion chamber to generate an equilibrium vapor/liquid pair at a known temperature and vapor/liquid ratio (V/L). Inert gas such as helium or argon is injected to the equilibrium vapor space of the MPC to provide an equilibrium vapor sample sufficiently above atmospheric pressure for subsequent analysis using a standard refinery gas analyzer (RGA) such as described in Test Method D7833. Other gas analysis methods may be used provided they meet the minimum performance criteria stated in 7.4.1.1.2 This practice is suitable for UN Class 3 Liquid samples having vapor pressures between 0 kPa and 300 kPa at 50.0 °C, and 0.1:1 to 4:1 vapor/liquid ratio, spanning the nominal range near bubble point (Test Method D6377 VPCr,0.1) to Test Methods D323 (RVP), D4953, and D5191 (V/L=4). The temperature may vary over a wide range, provided that the cylinder is maintained at isothermal and isobaric conditions to prevent condensation of equilibrium vapor upon cooling either in the cylinder or in the injection system of the Refinery Gas Analyzer (RGA, Test Method D7833). The method is best suited for preparation of an equilibrium gas/liquid pair near ambient conditions, typical of routine daily operations in a typical refinery quality assurance or marine terminal laboratory, to routinely monitor the light ends content of crude oil receipts.1.3 This practice is suitable to prepare an equilibrium liquid/vapor sample pair in a sealed sampling system (no light ends loss from either phase). The equilibrium gas phase is suitable for subsequent gas analysis of both hydrocarbon and fixed/inert gases in the sample, including: hydrogen, oxygen, nitrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, C1 to C7 hydrocarbons at levels consistent with the Test Method D7833 method used. The equilibrium liquid phase can be subsequently analyzed by Test Method D8003 to obtain paired analytical results on both the equilibrium liquid and vapor pair with a sealed sample system.1.4 Addition of the diluent gas provides a positive pressure sample to allow the use of a typical RGA-type gas injection system that operates only slightly above barometric pressure. The preferred diluent gas shall be the same as the carrier gas used in the RGA (typically helium or argon). Choice of diluent or carrier gas may affect the ability to detect some inert gases (especially O2 or H2) in some RGA configurations conforming to Test Method D7833.1.5 The VLE gas generation and subsequent RGA output is used as a screening method to identify gas components that can be present in the crude oil affecting the total vapor pressure. The RGA output only represents the equilibrium vapor components present and relative to one another. Due to dilution of the VLE gas with inert gas, the RGA output does not purport to accurately provide the actual vapor composition at VLE conditions and is definitely not representative of the composition of the whole sample.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
This practice deals with the terms, parameters, symbols, units, and relationships used in liquid column chromatography. Most of the terms covered herein should also apply to other kinds of liquid chromatography, notably planar chromatography such as paper or thin-layer chromatography. These terms include the names of techniques, apparatuses and reagents, the parameters and symbols used for chromatogram data readout, and the retention parameters, symbols and units.1.1 This practice deals primarily with the terms and relationships used in liquid column chromatography. However, most of the terms should also apply to other kinds of liquid chromatography, notably planar chromatography such as paper or thin-layer chromatography.NOTE 1: Although electrophoresis can also be considered a liquid chromatographic technique, it and its associated terms have not been included in this practice.1.2 Since most of the basic terms and definitions also apply to gas chromatography, this practice uses, whenever possible, symbols identical to Practice E355.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
This specification prescribes requirements for household Liquid Laundry Detergent Packet safety to help reduce unintentional exposures to the contents of the packets, especially to children. Liquid Laundry Detergent Packets refer to single-use laundry detergent products that contain a liquid detergent enclosed in a water soluble outer layer (”pouch film”), such as laundry detergent packets in soluble film having an all-liquid content, and those containing both liquid and non-liquid components.This specification also covers packaging and labeling requirements.1.1 This specification provides requirements for household Liquid Laundry Detergent Packet safety to help reduce unintentional exposures to the contents of the packets, especially to children.1.2 This standard applies exclusively to household Liquid Laundry Detergent Packets. “Liquid Laundry Detergent Packets” are single-use laundry detergent products that contain a liquid detergent enclosed in a water soluble outer layer (“pouch film”). This includes laundry detergent packets in soluble film that contain liquid only (that is, all liquid), as well as those that contain both liquid and non-liquid components.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
3.1 Driers accelerate the drying of oil, paint, printing ink, and varnish.3.2 These test methods are applicable to liquid driers manufactured for use in paints and related coatings.3.3 The tests for metallic content using ethylenediaminetetraacetic acid dihydrate (EDTA) are intended for concentrated solutions of single metals; two or more metals may cause interference.1.1 These test methods cover the test procedures to be applied to liquid paint driers used in paints and related coatings. Typical paint driers, listed in Specification D600, are carboxylates of lead, cobalt, manganese, zinc, iron, calcium, and zirconium.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
1.1 In a broad sense, this terminology covers terminology associated with liquid particles dispersed in gas. The principal emphasis, however, is on particles produced by the process of atomization. 1.2 All terms, followed by their definitions, are arranged alphabetically. In addition, the terminology contains several tables wherein terms related to specific subjects are segregated and identified. 1.3 Within the broad scope, the following specific categories are included: 1.3.1 Terms pertaining to the structure and condition of individual particles or groups of particles as observed in nature. 1.3.2 Terms pertaining to the structure and condition of individual particles or groups of particles produced by an atomizing device. 1.3.3 Terms pertaining to atomizing devices according to the primary energy source responsible for spray development. (When more than one term is used for the same device or class of devices, the alternative term is followed by the preferred term.) Definitions of the devices may refer to their construction, operating principle, or distinctive spray characteristics. The atomizers, however, are not classified by their respective areas of application or end use. Moreover, the listed terms are generic and do not include brand names, trademarks, or proprietary designations. 1.3.4 Terms pertaining to statistical parameters involving particle measurement, particle size, and size distribution functions. 1.3.5 Terms pertaining to instruments and test procedures utilized in the characterization of liquid particles and sprays. 1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
4.1 This test method was developed primarily for the determination of traces of mercury in chlorine produced by the mercury-cell process.1.1 This test method2 covers the determination of mercury in liquid chlorine with a lower limit of detection of 0.1 μg/L.1.2 Review the current Safety Data Sheet (SDS) for detailed information concerning toxicity, first-aid procedures, and safety precautions.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Sections 7, 6.3, 6.4, 6.5, and Note 2.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
1.1 These reference photographs are supplied as a means of establishing types and characteristics of surface discontinuities detectable by the penetrant examination methods. They may be used as a reference for acceptance standards, specifications and drawings.1.2 Actual dimensions including maximum length of indications and number of indications per unit area must be specified by the users of this document. No attempt has been made to establish limits of acceptability or the metallurgical cause of a discontinuity.NOTE 1: Examples of these reference photographs are shown in Figs. 1-8.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method evaluates the relative sensitivity of materials to mechanical impact in ambient pressure liquid oxygen, pressurized liquid oxygen, and pressurized gaseous oxygen.5.2 Any change or variation in test sample configuration, thickness, preparation, or cleanliness may cause a significant change in impact sensitivity/reaction threshold.5.3 Suggested criteria for discontinuing the tests are: (1) occurrence of two reactions in a maximum of 60 samples or less tested at the maximum energy level of 98 J (72 ft•lbf) or one reaction in a maximum of 20 samples tested at any other energy level for a material that fails; (2) no reactions for 20 samples tested at the 98-J (72-ft•lbf) energy level; or (3) a maximum of one reaction in 60 samples tested at the maximum energy level.1.1 This test method2 describes test equipment and techniques to determine the impact sensitivity of materials in oxygen under two different conditions: (1) in ambient pressure liquid oxygen (LOX) or (2) under pressure-controlled conditions in LOX or gaseous oxygen (GOX). It is applicable to materials for use in LOX or GOX systems at pressures from ambient to 68.9 MPa (0 to 10 000 psig). The test method described herein addresses testing with pure oxygen environments; however, other oxygen-enriched fluids may be substituted throughout this document.1.2 This test method provides a means for ranking nonmetallic materials as defined in Guide G63 for use in liquid and gaseous oxygen systems and may not be directly applicable to the determination of the sensitivity of the materials in an end-use configuration. This test method may be used to provide batch-to batch acceptance data. This test method may provide a means for evaluating metallic materials in oxygen-enriched atmospheres also; however, Guide G94 should be consulted for preferred testing methods.1.3 Values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. See also Section 9.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 1011元 加购物车
5.1 This test method provides accurate biobased/biogenic carbon content results to materials whose carbon source was directly in equilibrium with CO2 in the atmosphere at the time of cessation of respiration or metabolism, such as the harvesting of a crop or grass living in a field. Special considerations are needed to apply the testing method to materials originating from within artificial environments with non-natural levels of 14C or if the biofeed was grown over the course of several years such as trees and contains “bomb-carbon.” Application of these test methods to materials derived from CO2 uptake within artificial environments is beyond the present scope of this standard.5.2 This method uses LSC techniques to quantify the biobased content of a liquid hydrocarbon fuels using sample carbon that has been unmodified. It is designed to be able to incorporate into a refinery laboratory to support biofeed and petroleum coprocessing or blending operations to determine the biocarbon content of the intermediate or finished products. The test results can then be used for optimizing internal parameters or reporting to regulatory agencies.5.3 The use of this method requires that a pure petroleum-based sample can be generated that has a similar matrix to each product or stream to be analyzed. For example, gasoline and diesel have very different matrices and will likely require the use of different background measurements for each. Refer to 10.2 for how to determine if the same background sample can be used for more than one product/stream.1.1 This test method covers quantitatively determining biocarbon content of liquid hydrocarbon fuels with a focus on those produced in a typical petroleum refinery using liquid scintillation counting (LSC). The method is designed to generate analogous results as Test Method D6866 Method C, for low quench samples, without the need of benzene synthesis. The purpose is to be able to use the produced data to report biocarbon content of refinery products to regulatory agencies and monitor refinery operation. The method does not address regulatory reporting or fuel performance.1.2 The method is needed to support refinery operations when bio-feeds are co-processed with petroleum within a reactor with a focus on samples with 100 % biocarbon or less (not for 14C labeled species). It allows refineries to report the biocarbon content of refinery products to regulatory agencies such as the Environmental Protection Agency (EPA) or California Air Resources Board (CARB) to comply with regulatory statutes such as The Renewable Fuel Standard (RFS) or Low Carbon Fuel Standard (LCFS).1.3 This test method is applicable to any liquid fuel product, petroleum based (pure hydrocarbon), biobased (such as renewable diesel or those that can contain oxygenates such as ethanol), or blends, that contain 1 % to 100 % by mass biocarbon where an instrument background can be experimentally determined using a sample of similar matrix that contains no measurable carbon-14.1.4 This test method makes no attempt to teach the basic principles of the instrumentation used although minimum requirements for instrument selection are referenced in Refs (1-11).2 However, the preparation of samples for the above test methods is described. No details of instrument operation are included here. These are best obtained from the manufacturer of the specific instrument in use.1.5 Pre-Requisite Requirements For Method Execution—This test method uses artificial carbon-14 (14C) within the method. Great care shall be taken to prevent laboratory contamination of the elevated 14C. Once in the laboratory, artificial 14C can contaminate a variety of laboratory surfaces that can lead to artificially high sample biocarbon measurements. If vigorous cleaning attempts to remove the artificial 14C from a laboratory are unsuccessful, instrumentation and sample preparation may have to be moved to a new laboratory away from the contamination or the laboratory may have to rely on outside third-party labs for analysis. Specific procedural steps have been incorporated into this method that minimize the risk of sample and lab contamination. Wipe tests and quality assurance samples can validate absence of contamination. In the event of contamination in the laboratory or instrument, vigorous cleaning protocols shall be implemented, and analysis cannot be resumed until the lab and instrument are free of contamination. Accepted requirements are:1.5.1 Working with the elevated 14C samples in a separate and defined area away from the instrument and the preparation of any non-spiked samples.1.5.2 Using separate personnel to prepare the spiked samples and non-spiked samples.1.5.3 Using separate laboratory spaces with separate HVAC systems for the handling of spiked and non-spiked samples. The use of separate fume hoods that have separate exhaust ventilation satisfies this requirement.1.5.4 Weekly wipe tests of 14C sample handling area(s) to detect lab contamination.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车