5.1 TDG is a Schedule 2 compound under the Chemical Weapons Convention (CWC). Schedule 2 chemicals include those that are precursors to chemical weapons, chemical weapons agents, or have a number of other commercial uses. They are used as ingredients to produce insecticides, herbicides, lubricants, and some pharmaceutical products. Schedule 2 chemicals can be found in applications unrelated to chemical weapons. TDG is both a mustard gas precursor and a degradant as well as an ingredient in water-based inks, ballpoint pen inks, dyes, and some pesticides.55.2 This method has been investigated for use with soil.1.1 This procedure covers the determination of thiodiglycol (TDG) in soil using pressurized fluid extraction (PFE). A commercially available PFE system2 is used, followed by analysis using liquid chromatography (LC), and detected with tandem mass spectrometry (MS/MS). TDG is qualitatively and quantitatively determined by this method. This method adheres to single reaction monitoring (SRM) mass spectrometry.1.2 The method detection limit (MDL) and reporting range for TDG are listed in Table 1.1.2.1 The MDL is determined following the Code of Federal Regulations, 40 CFR Part 136, Appendix B.1.2.2 The reporting limit (RL) is calculated from the concentration of the Level 1 calibration standard as shown in Table 4. The RL for this method is 200 ppb. Reporting range concentrations are calculated from Table 4 concentrations assuming a 5 μL injection of the lowest level calibration standard, 5 g sample, and a 2 mL final extract volume.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method has been developed by U.S. EPA Region 5 Chicago Regional Laboratory (CRL).5.2 The N-methyl carbamate (NMC) pesticides: aldicarb, carbofuran, methomyl, oxamyl, and thiofanox have been identified by EPA as working through a common mechanism. These affect the nervous system by reducing the ability of enzymes. Enzyme inhibition was the primary toxicological effect of regulatory concern to EPA in assessing the NMC’s food, drinking water, and residential risks. In most of the country, NMC residues in drinking water sources are at levels that are not likely to contribute substantially to the multi-pathway cumulative exposure. Shallow private wells extending through highly permeable soils into shallow, acidic ground water represent what the EPA believes to be the most vulnerable drinking water. Aldicarb sulfone and aldicarb sulfoxide are breakdown products of aldicarb and should also be monitored due to their toxicological effects.45.3 This test method has been investigated for use with reagent, surface, and drinking water for the selected carbamates: aldicarb, aldicarb sulfone, aldicarb sulfoxide, carbofuran, methomyl, oxamyl, and thiofanox.1.1 This test method covers the determination of aldicarb, aldicarb sulfone, aldicarb sulfoxide, carbofuran, methomyl, oxamyl, and thiofanox (referred to collectively as carbamates in this test method) in water by direct injection using liquid chromatography (LC) and detected with tandem mass spectrometry (MS/MS). These analytes are qualitatively and quantitatively determined by this test method. This test method adheres to multiple reaction monitoring (MRM) mass spectrometry.1.2 The Detection Verification Level (DVL) and Reporting Range for the carbamates are listed in Table 1.1.2.1 The DVL is required to be at a concentration at least 3 times below the Reporting Limit (RL) and have a signal/noise ratio greater than 3:1. Fig. 1 displays the signal/noise ratios of the primary single reaction monitoring (SRM) transitions, and Fig. 2 displays the confirmatory SRM transitions at the DVLs for the carbamates.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 DPGBE and EGBE have a variety of residential and industrial applications such as cleaning formulations, surface coatings, inks, and cosmetics. These analytes may be released into the environment at levels that may be harmful to aquatic life.5.2 This test method has been investigated for use with reagent and sea water.1.1 This test method covers the determination of dipropylene glycol monobutyl ether (DPGBE) and ethylene glycol monobutyl ether (EGBE) in sea water by direct injection using liquid chromatography (LC) and detection with tandem mass spectrometry (MS/MS). These analytes are qualitatively and quantitatively determined by this test method. This test method adheres to selected reaction monitoring (SRM) mass spectrometry.1.2 The detection verification level (DVL) and reporting range for DPGBE and EGBE are listed in Table 1.1.2.1 The DVL is required to be at a concentration at least 3 times below the reporting limit (RL) and have a signal/noise ratio greater than 3:1. Fig. 1 and Fig. 2 display the signal/noise ratio of the single reaction monitoring (SRM) transition.FIG. 1 Detection Verification Level Signal/Noise RatioFIG. 2 Reporting Level (Calibration Standard) Signal/Noise Ratio1.2.2 The reporting limit is the concentration of the Level 1 calibration standard as shown in Table 4 for DPGBE and EGBE, taking into account the 20 % sample preparation dilution factor.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method allows the nondestructive measurement of the magnetic fraction of the binder phase in cemented carbide powder materials and sintered product, and may be used as an indirect measure of the carbon level in the material or product.5.2 Measurement of magnetic saturation provides a comparison of the relative fraction of magnetic binder phase, that is, cobalt, nickel, or iron, present in the material and can be used for acceptance of product to specification.5.3 Measurement of magnetic saturation can be used as a measure of the quality of powder material.1.1 This test method covers the determination of magnetic saturation (Ms) of cemented carbide powder materials and sintered products using magnetic saturation induction test instrumentation.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 PFAS are widely used in various industrial and commercial products; they are persistent, bio-accumulative, and ubiquitous in the environment. PFAS have been reported to exhibit developmental toxicity, hepatotoxicity, immunotoxicity, and hormone disturbance. PFAS have been detected in soils, sludges, surface, and drinking waters. This is a quick, easy, and robust method to quantitatively determine these compounds at trace levels in water matrices.5.2 This test method has been validated using reagent water and waters from sites that include landfill leachate, metal finisher, POTW Effluent, Hospital, POTW Influent, Bus washing station, Power Plant and Pulp and paper mill effluent for selected PFAS, refer to the Precision and Bias (Section 17).1.1 This test method covers the determination of per- and polyfluoroalkyl substances (PFASs) in aqueous matrices using liquid chromatography (LC) and detection with tandem mass spectrometry (MS/MS). These analytes are co-solvated by a 1+1 ratio of sample and methanol then qualitatively and quantitatively determined by this test method. Quantitation is by selected reaction monitoring (SRM) or sometimes referred to as multiple reaction monitoring (MRM).1.2 The method detection limit (MDL) (see Note 1) and reporting range (see Note 2) for the target analytes are listed in Table 1. The target concentration for the reporting limit for this test method is an integer value that is calculated from the concentration from the lowest standard from the final volume of the prepared sample. This value may be lower than the calculated MDL due to sporadic PFAS hits due to PFAS contamination in consumables/collection tools used during sample collection and preparation. All samples should be taken at a minimal as duplicates in order to compare the precision between the two prepared samples to help ensure the concentration/positive result is reliable.NOTE 1: The MDL is determined following the Code of Federal Regulations (CFR), 40 CFR Part 136, Appendix B utilizing dilution and filtration. A detailed process determining the MDL is explained in the reference and is beyond the scope of this test method.NOTE 2: Injection volume variations, and sensitivity of the instrument used will change the reporting limit and ranges.1.2.1 Recognizing continual advancements in the sensitivity of instrumentation, advancements in column chromatography and other processes not recognized here, the reporting limit may be lowered assuming the minimum performance requirements of this test method at the lower concentrations are met.1.2.2 Depending on data usage, you may modify this test method but limit to modifications that improve performance while still meeting or exceeding the method quality acceptance criteria. Modifications to the solvents, ratio of solvent to sample, or shortening the chromatographic run simply to save time are not allowed. Use Practice E2935 or similar statistical tests to confirm that modifications produce equivalent results on non-interfering samples. In addition, use Guide E2857 or equivalent statistics to re-validate the modified test.1.2.3 Analyte detections between the method detection limit and the reporting limit are estimated concentrations. The reporting limit is based upon the concentration of the Level 1 calibration standard as shown in Table 5.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 843元 加购物车
5.1 TTPC may be used in various industrial and commercial products for use as a biocide. Products containing TTPC have been approved for controlling algal, bacterial, and fungal slimes in industrial water systems.2 TTPC should not be persistent in water but may be deposited in sediments at concentrations of concern. Hence, there is a need for quick, easy and robust method to determine TTPC concentration at trace levels in water matrices for understanding the sources and concentration levels in affected areas. 5.2 This method has been used to determine TTPC in reagent water and a river water (Table 8). (A) Solution A: Level 8 stock solution prepared according to Section 12 and at Table 4 concentrations.(B) Solution B: 75 % Acetone, 25 % Water. Note 1: This test method has been used to characterize TTPC in real world water samples with success and similar recoveries as shown in Table 8. 1.1 This test method covers the determination of (Tri-n-butyl)-n-tetradecylphosphonium chloride (TTPC) in water by dilution with acetone, filtration and analysis by liquid chromatography/tandem mass spectrometry. This test method is not amenable for the analysis of isomeric mixtures of Tributyl-tetradecylphosphonium chloride. TTPC is a biocide that strongly adsorbs to soils.2 The water samples are prepared in a solution of 75 % acetone and 25 % water because TTPC has an affinity for surfaces and particles. The reporting range for this method is from 100 ng/L to 4000 ng/L. This analyte is qualitatively and quantitatively determined by this method. This test method adheres to multiple reaction monitoring (MRM) mass spectrometry. 1.2 A full collaborative study to meet the requirements of Practice D2777 has not been completed. This test method contains single-operator precision and bias based on single-operator data. Publication of standards that have not been fully validated is done to make the current technology accessible to users of standards, and to solicit additional input from the user community. 1.3 The Method Detection Limit3 (MDL) and Reporting Range4 for the target analyte are listed in Table 1. 1.3.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. Analyte detections between the method detection limit and the reporting limit are estimated concentrations and are not reported following this test method. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 4 for TTPC after taking into account a 2.5 mL water sample volume and a final diluted sample volume of 10 mL (75 % acetone/25 % water). The final solution volume is 10 mL because a 7.5 mL volume of acetone is added to each 2.5 mL water sample which is shaken and filtered. 1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. 1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 PFAS are widely used in various industrial and commercial products; they are persistent, bio-accumulative, and ubiquitous in the environment. PFAS have been reported to exhibit developmental toxicity, hepatotoxicity, immunotoxicity, and hormone disturbance. PFAS have been detected in soils, sludges, surface, and drinking waters. This is a quick, easy, and robust method to quantitatively determine these compounds at trace levels in soil/biosolid matrices.5.2 This test method has been validated using four ASTM reference soils (CH-1, ML-1, CL-1, and SP-1). ASTM reference soil CH-1 is Fat Clay (CH)—Vicksburg Buckshot Clay; ASTM reference soil ML-1 is silt (ML)—Vicksburg silt; ASTM reference soil CL-1 is lean clay (CL)—Annapolis clay; and ASTM reference soil SP-1 is sand (SP)—Frederick sand and four biosolids (Missouri, California, Idaho, and Georgia). Refer to the Precision and Bias (Section 17).1.1 This test method covers the determination of per- and polyfluoroalkyl substances (PFAS) in soil/biosolid matrices by solvent extraction, filtering, separation using liquid chromatography (LC), and detection with tandem mass spectrometry (MS/MS). These analytes are extracted from soil/biosolids with basic water and methanol then qualitatively and quantitatively determined by this test method. Quantitation is by selected reaction monitoring (SRM), sometimes referred to as multiple reaction monitoring (MRM).1.2 The reporting limit (RL) and reporting range (see Note 2) for the target analytes are listed in Table 1. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 5 for the PFAS after taking into account a 2 g sample weight and a final extract volume of 10 mL, 50 % water/50 % MeOH with 0.1 % acetic acid. The final extract volume is assumed to be 10 mL because 10 mL of 50 % water/50 % MeOH with 0.1 % acetic acid was added to each soil sample and only the liquid layer after extraction is filtered, leaving the solid and any residual solvent behind. Sporadic PFAS hits due to PFAS contamination in consumables/collection tools used during sample collection and preparation is possible while executing this standard and must be monitored. All samples should be taken at a minimum as duplicates in order to compare the precision between the two prepared samples to help ensure the concentration/positive result is reliable.NOTE 1: This standard only includes the determination of the analytes listed in Table 1 and is only applicable to soil and biosolid matrices; any added compost or soil additives may contain PFAS that may be bound and not able to be determined by this method. Analysis of packaging materials and polymeric PFAS moieties are not amenable to this standard.NOTE 2: Injection volume variations and sensitivity of the instrument used will change the reporting limit and ranges.1.2.1 Recognizing continual advancements in the sensitivity of instrumentation, advancements in column chromatography, and other processes not recognized here, the reporting limit may be lowered assuming the minimum performance requirements of this test method at the lower concentrations are met.1.2.2 Depending on data usage, you may modify this test method but limit to modifications that improve performance while still meeting or exceeding the method quality acceptance criteria. Modifications to the solvents, ratio of solvent to sample, or shortening the chromatographic run simply to save time are not allowed. Use Practice E2935 or similar statistical tests to confirm that modifications produce equivalent results on non-interfering samples. In addition, use Guide E2857 or equivalent statistics to revalidate the modified test.1.2.3 Analyte detections under the reporting limit are estimated concentrations. If results are to be reported below the RL using this standard and following the method detection limit procedure in 40 CFR Part 136 Appendix B, data shall be qualified estimated and extra caution must be taken to evaluate and identify false positives.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 843元 加购物车
5.1 This test method has been developed by the U.S. EPA Region 5 Chicago Regional Laboratory (CRL).5.2 TTPC may be used in various industrial and commercial products for use as a biocide. Products containing TTPC have been approved for controlling algal, bacterial, and fungal slimes in industrial water systems.2 TTPC should not be persistent in water but may be deposited in sediments at concentrations of concern. Hence, there is a need for quick, easy, and robust method to determine TTPC concentration at trace levels in various soil matrices for understanding the sources and concentration levels in affected soils and sediments.5.3 This method has been used to determine TTPC in sand, a commercial top soil, and four ASTM reference soils (Table 4).1.1 This procedure covers the determination of (Tri-n-butyl)-n-tetradecylphosphonium chloride (TTPC) in a soil matrix by extraction with acetone, filtration, dilution with water, and analysis by liquid chromatography/tandem mass spectrometry. TTPC is a biocide that strongly adsorbs to soils.2 The sample extracts are prepared in a solution of 75 % acetone and 25 % water because TTPC has an affinity for surfaces and particles. The reporting range for this method is from 250 to 10 000 ng/kg. This analyte is qualitatively and quantitatively determined by this method. This method adheres to multiple reaction monitoring (MRM) mass spectrometry.1.2 The method detection limit (Note 1) (MDL) and reporting range (Note 2) for the target analyte are listed in Table 1.NOTE 1: The MDL is determined following the Code of Federal Regulations, 40 CFR Part 136, Appendix B, as a guide utilizing solvent extraction of soil. Two-gram sample of Ottawa sand was utilized. A detailed process determining the MDL is explained in the reference and is beyond the scope of this standard to be explained here.NOTE 2: Reporting range concentration is calculated from Table 2 concentrations assuming a 50-μL injection of the Level 1 calibration standard for TTPC, and the highest level calibration standard with a 20-mL final extract volume of a 2-g soil sample. Volume variations will change the reporting limit and ranges.1.2.1 The reporting limit in this test method is the minimum value below which data are documented as non-detects. Analyte detections between the method detection limit and the reporting limit are estimated concentrations and are not reported following this test method. The reporting limit is calculated from the concentration of the Level 1 calibration standard as shown in Table 2 for TTPC after taking into account a 2-g sample weight and a final extract volume of 20 mL in 75 % acetone/25 % water. The final extract volume is 20 mL because a 15-mL volume of acetone is added to each soil sample and only the liquid layer after extraction is filtered leaving the solid behind followed by the addition of 5 mL of water to the acetone extract.1.3 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车