微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method for yarn number is satisfactory for acceptance of commercial shipments and is used in the trade.5.1.1 In case of a dispute arising from differences in reported test results when using this Test Method for acceptance testing of commercial shipments, the purchaser and the supplier should either use the referee Test Method D1907 for yarn number or conduct comparative tests to determine if there is a statistical bias between their laboratories. Competent statistical assistance is recommended for the investigation of bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible and that are from a lot of material of the type in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using appropriate statistical analysis and a probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.5.2 This test method is also used for the quality control for both filament and spun yarns.1.1 This test method covers the measurement of yarn number of filament and spun yarns using automated testers. Some of the instruments are stand-alone and others are optional modules for instruments that perform additional tests.1.1.1 The instruments are capable of measuring yarn numbers up to 4000 dtex (3600 denier).NOTE 1: For determination of yarn number by use of reel and balance, refer to Test Method D1907.1.2 The values stated in SI units are to be regarded as standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 Fully refined petroleum oils normally contain no naphtha-insoluble material. Semirefined or black oils frequently contain some naphtha-insoluble material (sometimes referred to as asphaltenes). This test measures the amount of naphtha-insoluble material in the oil. This quantity is reported as the precipitation number.1.1 This test method covers the determination of the precipitation number of steam cylinder stocks and black oils, and can be used for other lubricating oils.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏
ASTM D6854-15a Standard Test Method for Silica—Oil Absorption Number (OAN) (Withdrawn 2018) Withdrawn, No replacement 发布日期 :  1970-01-01 实施日期 : 

4.1 The oil absorption number of a specific silica is related to the processing and vulcanizate properties of rubber compounds containing the silica.1.1 This test method covers the determination of the oil absorption number (OAN) of silica.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 General Utility: 5.1.1 It is necessary to know the hydroxyl number of polyols in order to formulate polyurethane systems.5.1.2 This practice is suitable for research, quality control, specification testing, and process control.5.2 Limitations: 5.2.1 Factors affecting the NIR spectra of the analyte polyols need to be determined before a calibration procedure is started. Chemical structure, interferences, any nonlinearities, the effect of temperature, and the interaction of the analyte with other sample components such as catalyst, water and other polyols needs to be understood in order to properly select samples that will model those effects which cannot be adequately controlled.5.2.2 Calibrations are generally considered valid only for the specific NIR instrument used to generate the calibration. Using different instruments (even when made by the same manufacturer) for calibration and analysis can seriously affect the accuracy and precision of the measured hydroxyl number. Procedures used for transferring calibrations between instruments are problematic and are to be utilized with caution following the guidelines in Section 16. These procedures generally require a completely new validation and statistical analysis of errors on the new instrument.5.2.3 The analytical results are statistically valid only for the range of hydroxyl numbers used in the calibration. Extrapolation to lower or higher hydroxyl values can increase the errors and degrade precision. Likewise, the analytical results are only valid for the same chemical composition as used for the calibration set. A significant change in composition or contaminants can also affect the results. Outlier detection, as discussed in Practices E1655, is a tool that can be used to detect the possibility of problems such as those mentioned above.1.1 This standard covers a practice for the determination of hydroxyl numbers of polyols using NIR spectroscopy.1.2 Definitions, terms, and calibration techniques are described. Procedures for selecting samples, and collecting and treating data for developing NIR calibrations are outlined. Criteria for building, evaluating, and validating the NIR calibration model are also described. Finally, the procedure for sample handling, data gathering and evaluation are described.1.3 The implementation of this standard requires that the NIR spectrometer has been installed in compliance with the manufacturer's specifications.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This standard is equivalent ISO 15063.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method D6612 for yarn number and yarn number variability is satisfactory for acceptance of commercial shipments and is used in the trade.5.1.1 If there are differences of practical significance between the reported test results for two or more laboratories, comparative tests should be performed by those laboratories to determine if there is a statistical bias between them, using competent statistical assistance. As a minimum, samples used for each comparative tests should be as homogeneous as possible, drawn from the same lot of material as the samples that results in disparate results during initial testing, and randomly assigned in equal numbers to each laboratory. Other fabrics with established tests values are used for this purpose. The test results from the laboratories involved should be compared appropriate statistical analysis and a probability level chosen by the two parties before testing begins, at a probability level chosen prior to the testing series. If a bias is found, either its cause must be found and corrected, or future test results adjusted in consideration of the known bias.5.1.2 The average results from the two laboratories should be compared using appropriate statistical analysis and a probability level chosen by the two parties before the testing is begun. If a bias is found, either its cause must be found and corrected or the purchaser and the supplier must agree to interpret future test results with consideration to the known bias.5.2 Test Method D6612 also is used for the quality control of filament yarns.5.3 Indices of Variability: 5.3.1 Coefficient of Variation—%CV is a standard statistical calculation and is the most common index of yarn unevenness. For most textile applications in the 80 to 330 dtex (70 to 300 denier) range, a 1.0 to 1.3 %CV is adequate. %CV of yarns coarser than 666 dtex (600 denier) is not routine and usually not meaningful. %CV is less discriminating that %DS.5.3.2 Bad/Good Test—%BGT, which will normally be up to 20 % greater than %DS value, emphasizes the greatest spread in the entire length tested, (%DS is an average). If the value is greater than 50 % of the %DS, it suggests that there is a process that needs to be investigated.5.3.3 Density Spread—%DS is equivalent to the Uster % unevenness (Test Method D1425) and is an indication of short-term variability. Yarns with extreme values are more likely to cause trouble in subsequent yarn processes, which makes this perhaps the most useful index. The minimum achievable and maximum tolerance spread for a yarn product will depend on the yarn manufacturing process and end use. A spread of 3 to 4 % generally is, for most textile applications, in the range of 160 to 550 dtex (150 to 500 deniers). More critical applications, such as those using finer yarns, may require lower values.5.3.4 Density Frequency Variability—DFV is an index of spacing variability, whereas the others are indices of magnitude or unevenness. Frequency variability can induce resonance in high-speed processing and is a common source of barre, dye streaks, or patterned unevenness in fabrics.1.1 This test method covers the measurement of yarn number up to 4000 dtex (3600 denier) and related variability properties of filament and spun yarns using an automated tester with capability for measuring mass variability characteristics.1.2 Yarn number variability properties include percent density spread (%DS), coefficient of variation (%CV), density frequency variation.NOTE 1: For determination of yarn number by use of reel and balance, refer to Test Method D1907. For another method of measuring variability (unevenness) in yarn, refer to Test Method D1425.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore to ensure conformance with this standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515元 / 折扣价: 438 加购物车

在线阅读 收 藏

5.1 The ID and DCN values determined by this test method can provide a measure of the ignition characteristics of diesel fuel oil in compression ignition engines.5.2 This test can be used in commerce as a specification aid to relate or match fuels and engines. It can also be useful in research or when there is interest in the ignition delay of a diesel fuel under the conditions of this test method.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test may be applied to non-conventional fuels. It is recognized that the performance of non-conventional fuels in full-scale engines is not completely understood. The user is therefore cautioned to investigate the suitability of ignition characteristic measurements for predicting performance in full-scale engines for these types of fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 100 mL and a test time of approximately 20 min on a fit-for-use instrument.1.1 This automated laboratory test method covers the quantitative determination of the ignition characteristics of conventional diesel fuel oil, oil-sands based fuels, hydrocarbon oils, blends of fuel containing biodiesel material, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of ASTM Specification D975 grades No. 1-D S15, No. 1-D S500, and No. 1-D S5000, and grades No. 2-D S15, No. 2-D S500, and No. 2-D S5000 diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517 and 3.520. The test method may also be applied to the quantitative determination of the ignition characteristics of diesel fuel blending components.1.2 This test method measures the ignition delay of a diesel fuel injected directly into a constant volume combustion chamber containing heated, compressed air. An equation correlates an ignition delay determination to cetane number by Test Method D613, resulting in a derived cetane number (DCN).1.3 This test method covers the ignition delay range from 2.64 ms to 6.90 ms (75.1 DCN to 31.5 DCN). The combustion analyzer can measure shorter and longer ignition delays, but precision may be affected. For these shorter or longer ignition delays the correlation equation for DCN is given in Appendix X2.1.4 For purposes of determining conformance with the parameters of this test method, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the parameter, in accordance with the rounding method of Practice E29.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646元 / 折扣价: 550 加购物车

在线阅读 收 藏

5.1 The ID and DCN values determined by this test method can provide a measure of the ignition characteristics of diesel fuel oil in compression ignition engines.5.2 This test can be used by engine manufacturers, petroleum refiners and marketers, and in commerce as a specification aid to relate or match fuels and engines.5.3 The relationship of diesel fuel oil DCN determinations to the performance of full-scale, variable-speed, variable-load diesel engines is not completely understood.5.4 This test may be applied to non-conventional fuels. It is recognized that the performance of non-conventional fuels in full-scale engines is not completely understood. The user is therefore cautioned to investigate the suitability of ignition characteristic measurements for predicting performance in full-scale engines for these types of fuels.5.5 This test determines ignition characteristics and requires a sample of approximately 220 mL and a test time of approximately 20 min on a fit-for-use instrument.1.1 This test method covers the quantitative determination of the ignition characteristics of conventional diesel fuel oils, diesel fuel oils containing cetane number improver additives, and is applicable to products typical of Specification D975, Grades No. 1-D and 2-D regular and low-sulfur diesel fuel oils, European standard EN 590, and Canadian standards CAN/CGSB-3.517-2000 and CAN/CGSB 3.6-2000. The test method may also be applied to the quantitative determination of the ignition characteristics of blends of fuel oils containing biodiesel material, and diesel fuel oil blending components.1.2 This test method measures the ignition delay and utilizes a constant volume combustion chamber with direct fuel injection into heated, compressed air. An equation converts an ignition delay determination to a derived cetane number (DCN).1.3 This test method covers the ignition delay range from a minimum value of 35.0 DCN (ignition delay of 4.89 ms) to a maximum value of 59.6 DCN (ignition delay of 2.87 ms). The average DCN result for each sample in the ILS ranged from 37.29 (average ignition delay of 4.5894 ms) to 56.517 (average ignition delay of 3.0281 ms).1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 0元 / 折扣价: 0

在线阅读 收 藏

5.1 New and used petroleum products can contain basic or acidic constituents that are present as additives or as degradation products formed during service, such as oxidation products. The relative amount of these materials can be determined by titrating with acids or bases. This number, whether expressed as acid number or base number, is a measure of this amount of acidic or basic substances, respectively, in the oil—always under the conditions of the test. This number is used as a guide in the quality control of lubricating oil formulations. It is also sometimes used as a measure of lubricant degradation in service; however, any condemning limits must be empirically established.5.2 Since a variety of oxidation products contribute to the acid number and the organic acids vary widely in corrosive properties, the test cannot be used to predict corrosiveness of an oil under service conditions. No general correlation is known between acid number and the corrosive tendency of oils toward metals. Compounded engine oils can and usually do have both acid and base numbers in this test method.1.1 This test method covers the determination of acidic or basic constituents (Note 1) in petroleum products3 and lubricants soluble or nearly soluble in mixtures of toluene and isopropyl alcohol. It is applicable for the determination of acids or bases whose dissociation constants in water are larger than 10−9; extremely weak acids or bases whose dissociation constants are smaller than 10−9 do not interfere. Salts react if their hydrolysis constants are larger than 10−9.NOTE 1: In new and used oils, the constituents considered to have acidic characteristics include organic and inorganic acids, esters, phenolic compounds, lactones, resins, salts of heavy metals, and addition agents such as inhibitors and detergents. Similarly, constituents considered to have basic properties include organic and inorganic bases, amino compounds, salts of weak acids (soaps), basic salts of polyacidic bases, salts of heavy metals, and addition agents such as inhibitors and detergents.NOTE 2: This test method is not suitable for measuring the basic constituents of many basic additive-type lubricating oils. Test Method D4739 can be used for this purpose.1.2 This test method can be used to indicate relative changes that occur in an oil during use under oxidizing conditions. Although the titration is made under definite equilibrium conditions, the method does not measure an absolute acidic or basic property that can be used to predict performance of an oil under service conditions. No general relationship between bearing corrosion and acid or base numbers is known.NOTE 3: Oils, such as many cutting oils, rustproofing oils, and similar compounded oils, or excessively dark-colored oils, that cannot be analyzed for acid number by this test method due to obscurity of the color-indicator end point, can be analyzed by Test Method D664. The acid numbers obtained by this color-indicator test method need not be numerically the same as those obtained by Test Method D664, the base numbers obtained by this color indicator test method need not be numerically the same as those obtained by Test Method D4739, but they are generally of the same order of magnitude.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 This practice provides a calculation method for determining the number of constrictions m of a non-woven geotextile (or of a layer of a composite material). This standard is not applicable to woven geotextiles, knitted geotextiles, heat-bonded geotextiles, or any other type of geosynthetic.5.2 The number of constrictions represents the number of “windows” delimited by three or more fibers, in which soil particles could migrate. This value has been found to be relevant to explain the different filtration behaviors of non-woven geotextiles with similar opening sizes but different structures for various soil conditions (see Appendix X1 for details).5.3 This value will be used in filtration research to evaluate the prediction of filtration efficiency and effectiveness of various non-woven geotextiles with similar opening sizes (Test Method D6767).5.4 Interpretation of the significance of m as calculated using this standard shall be done with care, as some non-woven structures may not reflect the hypothesis used to establish the proposed equation (see Appendix X1 for details).1.1 This practice describes the procedure used along with existing test methods to determine the number of constrictions m of mechanically bonded non-woven geotextiles, based on thickness, mass per unit area, and fiber properties1.2 The number of constrictions is a property of non-woven geotextiles, which is complementary to opening size to predict their filtration behavior. It can be used to differentiate non-woven geotextiles with similar opening sizes but different structures (thickness, weight, fiber diameter, etc.). However, more research is needed to assess its significance when comparing two products with different opening sizes.1.3 Consideration of the number of constrictions is relevant in filtration applications where piping or clogging concerns are to be controlled with a high level of confidence, that is, for filter applications in critical soils.1.4 This standard is for design purposes only and is not intended for quality control purposes.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 The magnitude of the hydroperoxide number is an indication of the quantity of oxidizing constituents present. Deterioration of the fuels results in the formation of hydroperoxides and other oxygen-carrying compounds. The hydroperoxide number measures those compounds that will oxidize potassium iodide.5.2 The determination of the hydroperoxide number of aviation turbine fuels, gasoline and diesel is significant because of the adverse effect of hydroperoxide upon certain elastomers in the fuel systems.5.3 The determination of hydroperoxide number of gasoline is significant because hydroperoxides have been demonstrated to decrease both Research and Motor Octane Numbers. In addition, hydroperoxides have adverse effects on certain fuel system components.5.4 The determination of hydroperoxide number of diesel fuel is significant because hydroperoxides have been demonstrated to increase the Cetane Number. In addition, hydroperoxides have adverse effects on certain fuel system components.1.1 This test method covers the determination of the hydroperoxide content expressed as hydroperoxide number of aviation turbine, gasoline and diesel fuels.1.2 The range of hydroperoxide number included in the precision statement is 0 mg/kg to 50 mg/kg active oxygen as hydroperoxide.1.3 The interlaboratory study to establish the precision of this test method consisted of spark-ignition engine fuels (regular, premium and California Cleaner-Burning gasoline), aviation gasoline, jet fuel, ultra low sulfur diesel, and biodiesel. However, biodiesel was not included in the precision calculation because of the large differences in results within labs and between labs.1.4 This test method detects hydroperoxides such as t-butyl hydroperoxide and cumene hydroperoxide. It does not detect sterically-hindered hydroperoxides such as dicumyl and di-t-butyl hydroperoxides1.5 Di-alkyl hydroperoxides added commercially to diesel fuels are not detected by this test method.1.6 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see 7.3, 7.6, 9.2, and Annex A1.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Test Method D1907/D1907M is considered satisfactory for acceptance testing of commercial shipments, since it has been used extensively in the trade for that purpose.5.1.1 In case of dispute arising from differences in reported test results when using Test Method D1907/D1907M for acceptance testing of commercial shipments, the purchaser and the supplier should conduct comparative tests to determine if there is a statistical bias between their laboratories.5.1.2 Competent statistical assistance is recommended for the determination of such a bias. As a minimum, the two parties should take a group of test specimens that are as homogeneous as possible, and that are from the same lot of the material in question. The test specimens should then be randomly assigned in equal numbers to each laboratory for testing. The average results from the two laboratories should be compared using statistical analysis for unpaired data, and an acceptable probability level chosen by the parties before testing begins. If a bias is found, either its cause must be identified and corrected, or the purchaser and supplier must agree to interpret future test results for that material with consideration to the known bias.5.2 This test method is intended primarily for the determination of the average linear density of yarns. However, the variations identified by the results may also provide useful information. If the coefficient of variation is to be calculated, each skein must be weighed separately, and a larger number of skeins will need to be tested (as compared to the number of skeins to be tested for the determination of the average yarn linear density alone).5.3 This test method includes seven options, depending on whether the yarn is scoured before weighing, weighed in the conditioned or oven-dried state, or whether or not the results obtained are adjusted for commercial moisture regain, or a commercial allowance. Option 1 (unscoured, conditioned yarn) is generally used for yarns spun on the cotton system, while Options 6 and 7 (scoured, oven dried yarn, plus commercial moisture regain, or allowance) are generally used for filament yarns, or yarns containing wool fibers. The specific options to be used in any instance shall be agreed upon by the parties, or as prescribed in test methods or tolerances.5.4 In Options 2, 3, 5, 6, and 7, an oven-dried sample is obtained by exposing the yarn in an oven with a supply of air at standard textile testing conditions, as described in 6.3.1.1 This test method covers the determination of the linear density of all types of yarn in package form, subject to the limitations of size and stretch given in 1.2 and 1.3. Provision is made for expressing yarn linear density in all the traditional yarn numbering systems.1.2 This test method is applicable to yarns that stretch less than 5 % when tension on the yarn is increased from 0.25 to 0.75 cN/tex [0.25 to 0.75 gf/tex]. By mutual agreement, and use of a lower than specified reeling tension, this method may also be adapted to measure the linear density of yarns that stretch more than 5 %, under the above force.1.3 This method is applicable to yarns finer than 2000 tex. However, it may be also adapted to coarser yarns by the use of skeins of shorter than specified lengths, and alternate reeling conditions, agreeable to the interested parties.1.4 Depending on the procedure used to calculate the moisture content of the yarn being tested, and its actual moisture content, or finish content, or both, one or more of the following options may be utilized.1.4.1 Unscoured Yarn: Option 1—Yarn at equilibrium with the standard atmosphere for testing textiles.Option 2—Oven-dried yarn.Option 3—Oven-dried yarn, plus commercial moisture regain.1.4.2 Scoured Yarn: Option 4—Scoured yarn at equilibrium with the standard atmosphere for testing textiles.Option 5—Oven-dried, scoured yarn.Option 6—Oven-dried, scoured yarn, plus commercial moisture regain.Option 7—Oven-dried, scoured yarn, plus commercial allowance (commercial moisture regain, plus an allowance for finish).1.5 Specimens used to determine yarn linear density may also be used to determine the skein breaking strength of the yarn. Hence, this method provides the sequence of steps to be followed, to determine both these yarn properties.NOTE 1: The linear density of yarns produced with jute, or glass, may also be determined by the following approved methods: Specifications D541, D578/D578M, and D681. The linear density of short yarn segments, raveled from fabrics, may be determined by Test Method D1059.1.6 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

4.1 The iodine adsorption number is useful in characterizing carbon blacks. It is related to the surface area of carbon blacks and is generally in agreement with nitrogen surface area. The presence of volatiles, surface porosity, or extractables will influence the iodine adsorption number. Aging of carbon black can also influence the iodine number.1.1 This test method covers the determination of the iodine adsorption number of carbon black.1.1.1 Method A is the original test method for this determination and Method B is an alternate test method using automated sample processing and analysis.1.2 The iodine adsorption number of carbon black has been shown to decrease with sample aging. Iodine Number reference materials have been produced that exhibit stable iodine number upon aging. One or more of these reference materials are recommended for daily monitoring (x-charts) to ensure that the results are within the control limits of the individual reference material. Use all Iodine Number reference materials from a set for standardization of iodine testing (see Section 8) when target values cannot be obtained.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏

5.1 Research O.N. correlates with commercial automotive spark-ignition engine antiknock performance under mild conditions of operation.5.2 Research O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-O.N. determinations.5.2.2 Research O.N., in conjunction with Motor O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the Road octane ratings for many vehicles, is posted on retail dispensing pumps in the U.S., and is referred to in vehicle manuals.This is more commonly presented as:5.2.3 Research O.N. is also used either alone or in conjunction with other factors to define the Road O.N. capabilities of spark-ignition engine fuels for vehicles operating in areas of the world other than the United States.5.3 Research O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.5.4 Research O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.1.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Research O.N., including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested using a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The O.N. scale is defined by the volumetric composition of PRF blends. The sample fuel knock intensity is compared to that of one or more PRF blends. The O.N. of the PRF blend that matches the K.I. of the sample fuel establishes the Research O.N.1.2 The O.N. scale covers the range from 0 to 120 octane number but this test method has a working range from 40 to 120 Research O.N. Typical commercial fuels produced for spark-ignition engines rate in the 88 to 101 Research O.N. range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Research O.N. range.1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pound units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific warning statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3 (6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.11.4, and X4.5.1.8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Motor O.N. correlates with commercial automotive spark-ignition engine antiknock performance under severe conditions of operation.5.2 Motor O.N. is used by engine manufacturers, petroleum refiners and marketers, and in commerce as a primary specification measurement related to the matching of fuels and engines.5.2.1 Empirical correlations that permit calculation of automotive antiknock performance are based on the general equation:Values of k1, k2, and k3 vary with vehicles and vehicle populations and are based on road-octane number determinations.5.2.2 Motor O.N., in conjunction with Research O.N., defines the antiknock index of automotive spark-ignition engine fuels, in accordance with Specification D4814. The antiknock index of a fuel approximates the road octane ratings for many vehicles, is posted on retail dispensing pumps in the United States, and is referred to in vehicle manuals.This is more commonly presented as:5.3 Motor O.N. is used for measuring the antiknock performance of spark-ignition engine fuels that contain oxygenates.5.4 Motor O.N. is important in relation to the specifications for spark-ignition engine fuels used in stationary and other nonautomotive engine applications.5.5 Motor O.N. is utilized to determine, by correlation equation, the Aviation method O.N. or performance number (lean-mixture aviation rating) of aviation spark-ignition engine fuel.71.1 This laboratory test method covers the quantitative determination of the knock rating of liquid spark-ignition engine fuel in terms of Motor octane number, including fuels that contain up to 25 % v/v of ethanol. However, this test method may not be applicable to fuel and fuel components that are primarily oxygenates.2 The sample fuel is tested in a standardized single cylinder, four-stroke cycle, variable compression ratio, carbureted, CFR engine run in accordance with a defined set of operating conditions. The octane number scale is defined by the volumetric composition of primary reference fuel blends. The sample fuel knock intensity is compared to that of one or more primary reference fuel blends. The octane number of the primary reference fuel blend that matches the knock intensity of the sample fuel establishes the Motor octane number.1.2 The octane number scale covers the range from 0 to 120 octane number, but this test method has a working range from 40 to 120 octane number. Typical commercial fuels produced for automotive spark-ignition engines rate in the 80 to 90 Motor octane number range. Typical commercial fuels produced for aviation spark-ignition engines rate in the 98 to 102 Motor octane number range. Testing of gasoline blend stocks or other process stream materials can produce ratings at various levels throughout the Motor octane number range.1.3 The values of operating conditions are stated in SI units and are considered standard. The values in parentheses are the historical inch-pounds units. The standardized CFR engine measurements continue to be in inch-pound units only because of the extensive and expensive tooling that has been created for this equipment.1.4 For purposes of determining conformance with all specified limits in this standard, an observed value or a calculated value shall be rounded “to the nearest unit” in the last right-hand digit used in expressing the specified limit, in accordance with the rounding method of Practice E29.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific hazard statements, see Section 8, 14.4.1, 15.5.1, 16.6.1, Annex A1, A2.2.3.1, A2.2.3.3(6) and (9), A2.3.5, X3.3.7, X4.2.3.1, X4.3.4.1, X4.3.9.3, X4.3.12.4, and X4.5.1.8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 918元 / 折扣价: 781 加购物车

在线阅读 收 藏

5.1 Crude oils and oil sands bitumen contain naturally occurring acidic species. Acidity of crude oil has been implicated in corrosion of distribution and process systems. The relative amount of these materials can be determined by titrating with bases. The acid number is a measure of this amount of acidic substance in the oil under the conditions of the test.5.2 Acid number of crude and distilled petroleum fractions has been measured by Test Method D664. Test Method D664 was developed for the analysis of lubricants and biodiesel. The titration solvent used in Test Method D664 does not properly address dissolving difficult samples such as crude oil, bitumen, and high wax samples addressed in this test method. Refer to Appendix X1.5.3 Test Method D974 is also not applicable to measuring acidity of crudes and highly colored samples because the indicator is not visible or it is difficult to discern a color change to detect the end point of the titration.1.1 This test method covers the determination of acidic components in crude oil and petroleum products including waxes, bitumen, base stocks, and asphalts that are soluble in mixtures of xylenes and propan-2-ol. It is applicable for the determination of acids whose dissociation constants in water are larger than 10–9; extremely weak acids whose dissociation constants are smaller than 10–9 do not interfere. The values obtained by this test method may not be numerically equivalent to other acid value measurements. The range of KOH acid numbers included in the precision statement is 0.1 mg/g to 16 mg/g.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Some specific hazards statements are given in Section 7 on Safety Precautions.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590元 / 折扣价: 502 加购物车

在线阅读 收 藏
86 条记录,每页 15 条,当前第 5 / 6 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页