微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 Seal attributes can be linked directly to a number of variables in process parameters, equipment, or material, as well as environmental (room temperature and relative humidity). Visual seal characteristics and defects can provide evidence of package integrity and production sealing problems.5.2 Visual seal defects often will be the first indication of heat sealing process variation. They also will indicate a lack of, or potential compromise to, package integrity after physical package performance testing.1.1 This test method covers the determination of channels in the package seal down to a width of 75 μm [0.003 in.] with a 60–100 % probability (see Section 8).1.1.1 The ability to visually detect channel defects in package seals is highly dependent on the size of channel, the degree of contrast from sealed and unsealed areas, the amount and type of adhesive between the two package layers, reflecting light angle, types of material used, the use of magnification, and the inspector's level of training and experience.1.2 This test method is applicable to packages with at least one transparent side so that the seal area may be clearly viewed.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 515 加购物车

在线阅读 收 藏

This specification covers the two types of joints, mechanical joint and push-on-joint, required for plastic pipe pressure systems with a wall thickness equal to or greater than that of SDR 64 intended for use in supply and distribution lines for water using flexible elastomeric seals. The joint shall be designed to provide a permanent seal, with surfaces free of imperfections that could adversely affect its performance. Internal hydrostatic pressure and vacuum tests shall be conducted on the assembled joints under standard laboratory temperature and relative humidity conditions. The joint assemblies shall conform to the pressure rating, stiffness, and deflection requirements.1.1 This specification covers the types of joints required for plastic pipe pressure systems with a wall thickness equal to or greater than that of SDR 64 and intended for use in supply and distribution lines for water, using flexible elastomeric seals. This specification covers the test requirements, test method, and materials. The test methods described are not intended to be routine quality control tests but are to evaluate the performance characteristics of the joint.1.2 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.3 The following safety hazards caveat pertains to the test method portion, Section 6, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

This specification covers joints for plastic pipe systems intended for drain, and gravity sewerage pipe at internal or external pressures less than a certain ft. head using flexible watertight elastomeric seals. The joints are classified into two types based on effecting watertightness through compression of an elastomeric seal or ring: push-on-joint is a joint in which an elastomeric ring gasket is compressed in the annular space between a bell end or socket and a spigot end of pipe and mechanical joint is a joint made using mechanical means or devices to develop a pressure seal. Joints shall not leak when subjected to the internal and external hydrostatic tests. All surfaces of the joint upon or against which the gasket bears shall be smooth and free of cracks, fractures, or imperfections. The gasket shall be the sole element depended upon to make the joint flexible and watertight. The gasket shall be a continuous elastomeric ring. In mechanical joints, the pipe spigot shall have a wall thickness sufficient to withstand, without deformation or collapse, the compressive force exerted when the fitting is tightened. Some joint designs provide for the angular deflection of a pipe joint, without reducing watertightness. Where greater deflections are required than permitted by the joint design, suitable fittings must be provided. The joint components shall be of such design that they will withstand the forces caused by the compression of the gasket when joined without cracking or fracturing when tested. Dimensions of joint components and gaskets shall meet the requirements specified. Test methods such as internal pressure test and vacuum test shall be performed.1.1 This specification covers joints for plastic pipe systems intended for drain, and gravity sewerage pipe at internal or external pressures less than 25-ft head using flexible watertight elastomeric seals. This specification is intended to cover the test requirements, test methods, and acceptable materials. The test methods described for the joints are not intended to be routine quality control tests but to be reliability or performance requirements.1.2 The text of this specification references notes, footnotes, and appendixes which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the specification.1.3 The following safety hazards caveat pertains only to the test method portion, paragraph 7.5, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

This specification establishes the general requirements for two types, two classes, and seven grades of rubber seals used in solar energy systems employing air-heat transport, such as duct and damper seals. Particular applications may necessitate other requirements that would take precedence over these requirements when specified. The design requirement stated herein pertains only to permissible deflections of the rubber during thermal expansion or contraction of the seal in use and the tolerances in dimensions of molded and extruded seals. This specification does not address the requirements pertaining to the fabrication or installation of the seals. Type C seals are intended for use in cold climates, while Type W seals are intended for use in warm climates. Grade designations (Grades 2 to 8) represent differing degrees of hardness. Finally, Class PS are preformed rubber seals, while Class SC are sealing compounds. Each class shall conform to individually specified values of the following requirements: ultimate elongation; compression set at specified times and temperatures; resistance to heating (hardness and ultimate elongation change, and volatiles lost); resistance to ozone; resistance to low temperature; and adhesion loss.1.1 This specification covers the general requirements for the rubber seals used in solar energy systems employing air-heat transport. Examples are duct and damper seals. Particular applications may necessitate other requirements that would take precedence over these requirements when specified.NOTE 1: Rubber seals for the collector are covered in Specifications D3667 and D3771.1.2 Design requirement pertains only to permissible deflections of the rubber during thermal expansion or contraction of the seal in use and the tolerances in dimensions of molded and extruded seals.1.3 This specification does not include requirements pertaining to the fabrication or installation of the seals.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 The following safety hazards caveat pertains only to the test methods portion, Section 10, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

1.1 This specification covers an adhesive lubricant for facilitating the insertion and positioning of preformed elastomeric bridge compression seals in either concrete or steel-faced joints, and which bonds the seal to the joint faces to waterproof the joint.1.2 Since a precision estimate for this standard has not been developed, this test method is to be used for research or informational purposes only. Therefore, this test should not be used for acceptance or rejection of a material for purchasing purposes.1.3 SI units are the standard. Units in parentheses are for information only.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

4.1 When more than one elastomer seal material is tested, the test methods yield comparative data on which to base judgements as to expected service quality. Suggested in-service property change limits are provided. Property changes beyond these limits will indicate limited service life of the elastomer seal.4.2 These test methods attempt to simulate service conditions through controlled aging and evaluation of property changes but may not give any direct correlations with actual part performance since actual service conditions vary widely. These test methods yield comparative data and indications of property changes of the elastomeric seal material under ideal service conditions. These test methods can be used for quality control purposes, for engineering assessments, for service evaluation, and for manufacturing control. The information from these test methods can be used to anticipate expected service quality.1.1 These test methods cover the procedure for measuring physical properties of elastomer seals in the form of O-rings after exposure to industrial hydraulic fluids and thermal aging. The measured properties are then compared to the physical properties of elastomer seals that have not been exposed to the industrial hydraulic fluids and thermal aging. The changes in these properties form a basis for assessing compatibility when these changes are compared against the suggested limits in Table 1.1.2 While these test methods involve the use of O-rings, they can also be used to evaluate the compatibility of the elastomeric compounds of specialty seals with industrial hydraulic fluids and their resistance to thermal aging. The compounds can be molded into O-rings for evaluation purposes.1.3 These test methods provide procedures for exposing O-ring test specimens to industrial hydraulic fluids under definite conditions of temperature and time. The resulting deterioration of the O-ring material is determined by comparing the changes in work function, hardness, physical properties, compression set, and seal volume after immersion in the test fluid to the pre-immersion values.1.4 The values stated in SI units are to be regarded as the standard.1.4.1 Exception—The values given in parentheses are for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers the properties of products made from dense thermoplastic elastomers used for compression seals, gaskets, setting blocks, spacers, and accessories for building construction sealing and glazing applications. The products are categorized into types according to resistance to tearing and compression set, grades based on durometer hardness, classes by flame propagation requirements, and into surfaces according to the surface characteristics. All products should be a performed extrusion manufactured from a thermoplastic vulcanizate and should conform to the specified requirements for tensile strength, elongation at break, hardness, ozone resistance, compression set, heat aging, tear resistance, brittleness temperature, and water absorption.1.1 This specification describes products composed of dense thermoplastic elastomers that are fabricated into gaskets and accessories (such as compression seals, setting blocks, spacers, and shims) for use in sealing and glazing applications in building construction. These products are used to seal or serve as components of compression sealing systems between mechanically restrained surfaces in building construction.1.2 The values stated in metric (SI) units are to be regarded as the standard. The inch-pound values given in parentheses are provided for information purposes only.1.3 Test Method C1166, as referenced in this specification, should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment that takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers the material requirements for preformed elastomeric strip seals and the corresponding steel locking edge rail used in expansion joint sealing. The scope of this specification is limited to preformed non-reinforced strip seals that mechanically lock into structural steel locking lugs. The sealing element can consist of a single layer strip or have multiple webs depending on individual project requirements. When used on highway bridges, limits on maximum joint opening and minimum steel thicknesses need to be addressed. The adhesive-lubricant used to install the preformed seal into the steel locking edge rail shall be a one part moisture curing polyurethane compound. The elastomeric seals shall conform to the physical properties prescribed for (1) tensile strength, (2) elongation at break, (3) hardness, (4) oven aging, (5) oil swell, (6) ozone resistance, (7) low temperature stiffening, and (8) compression set. Requirements for preformed elastomeric seal dimensions, sampling, and test methods to determine compliance with the specified physical properties are given.1.1 This specification covers the material requirements for preformed elastomeric strip seals and the corresponding steel locking edge rail used in expansion joint sealing. The scope of this specification is limited to preformed non-reinforced strip seals that mechanically lock into structural steel locking lugs. The sealing element can consist of a single layer strip or have multiple webs depending on individual project requirements. The structural steel locking edge rail shall be anchored into the structure in accordance with the purchaser's specific details. While the scope of this specification is limited to the materials used in fabrication of strip sealing systems, it is recommended that a practical means of testing the watertightness aspects of the individual systems either in the field or at a testing laboratory be developed. When used on highway bridges, limits on maximum joint opening and minimum steel thicknesses need to be addressed.1.2 The values stated in the inch-pound system shall be considered as standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏
146 条记录,每页 15 条,当前第 5 / 10 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页