This specification covers additives for aviation fuels used to inhibit ice formation in aircraft fuel systems. Three types of fuel system icing inhibitors are provided as follows: type I - ethylene glycol monomethyl ether, type II - anhydrous isopropanol, and type III - diethylene glycol monomethyl ether. The relative density, color, distillation range, non-volatile matter, and odor shall be tested to meet the requirements prescribed. The water properties, heptanes miscibility, acidity, water miscibility, and flash point shall be tested to meet the requirements prescribed.1.1 This specification covers additives for aviation fuels (for example, Specifications D910, D7547, and D1655) used to inhibit ice formation in aircraft fuel systems.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 WARNING—Mercury has been designated by many regulatory agencies as a hazardous substance that can cause serious medical issues. Mercury, or its vapor, has been demonstrated to be hazardous to health and corrosive to materials. Use Caution when handling mercury and mercury-containing products. See the applicable product Safety Data Sheet (SDS) for additional information. The potential exists that selling mercury or mercury-containing products, or both, is prohibited by local or national law. Users must determine legality of sales in their location.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
1.1 This specification covers the use of purchasing agencies in formulating specifications for purchases of aviation turbine fuel under contract.1.2 This specification defines one specific type of aviation turbine fuel for civil use in the certification of aircraft. The specification can be used as a standard in describing the quality of this aviation fuel from the refinery to the aircraft.1.3 This specification does not include the fuels that are commonly used in aviation turbine engines. Those are listed in Specification D1655.1.4 The aviation turbine fuel defined by this specification may be used in other than turbine engines that are specifically designed and certified for this fuel.1.5 The use of EI/IP (Energy Institute/Institute of Petroleum) test methods is permitted. The user of this specification is referred to Specification D1655 (latest revision), Specification for Aviation Turbine Fuels, Paragraph 2, Referenced Documents and Table 1, Detailed Requirements of Aviation Turbine Fuels, Column 4, Test Methods, to determine the pairing of the IP test method with the particular detailed requirement, and to Section 11, Test Methods, to identify jointed standards and referee methods.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6.1 Exception—Units of pressure are also given in psi.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
This specification covers dimethyl ether (DME) for use as a fuel in engines specifically designed or modified for DME and for blending with liquefied petroleum gas. It is intended for use by DME manufacturers, purpose-built engine developers, in contracts for the purchase of DME for fuel purposes, and for the guidance of consumers of this type of fuel. This specification includes chemical composition and other requirements, sampling, and test methods.1.1 This specification covers dimethyl ether (DME) for use as a fuel in engines specifically designed or modified for DME and for blending with liquefied petroleum gas (LPG). This specification is for use by manufacturers of dimethyl ether, by engine developers of purpose-built engines, in contracts for the purchase of DME for fuel purposes, and for the guidance of consumers of this type of fuel.NOTE 1: The generation and dissipation of static electricity can create problems in the handling of DME. For more information on the subject, see Guide D4865.1.2 The values stated in SI units are to be regarded as standard. Units in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Test Method—Deposits are prone to form on the metering surfaces of pintle-type electronic fuel injectors. These deposits reduce fuel flow through the metering orifices. Reductions in metered fuel flow result in an upset in the air-fuel ratio, which can affect emissions and driveability. When heavy enough, these deposits can lead to driveability symptoms such as hesitation, hard starting, loss of power, or a combination thereof, that are easily noticed by the average driver and lead to customer complaints. The mechanism of the formation of deposits is not completely understood. It is believed to be influenced by many factors, including driving cycle, engine design, port fuel injector design, and composition of fuel used. The procedure in this test method has been found to build deposits in injectors on a consistent basis. The deposits formed by this procedure are similar to the deposits experienced in the field in terms of composition and in amount of deposition. This procedure can be used to evaluate differences in unleaded base fuels and fuel additives.5.1.1 State and Federal Legislative and Regulatory Action—Legislative and regulatory activity, primarily by the state of California6 and the Federal Government7 necessitate the acceptance of a standard test method to evaluate the port fuel injector deposit-forming tendency of an automotive spark-ignition engine fuel.5.1.2 Relevance of Results—The operating conditions and design of the engine and vehicle used in this test method are not representative of all modern automobiles. These factors must be considered when interpreting test results.5.2 Test Validity: 5.2.1 Procedural Compliance—The test results are not considered valid unless the test is completed in compliance with all requirements of this test method. Deviations from the parameter limits presented in Section 10 will result in a void test. Engineering judgment must be applied during conduct of the test method when assessing any anomalies to ensure validity of the test results.5.2.2 Vehicle Compliance—A test is not considered valid unless the vehicle has met the quality control inspection requirements in accordance with 8.2.1.1 This test method covers a vehicle test procedure to evaluate the tendency of an unleaded spark-ignition engine fuel to foul electronic port fuel injectors (PFI).1.2 The test method is applicable to unleaded spark-ignition engine fuels which may contain antioxidants, corrosion inhibitors, metal deactivators, dyes, deposit control additives, and oxygenates.1.3 The values stated in SI units are to be regarded as the standard. The values in parentheses are provided for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given throughout this test method.NOTE 1: If there is any doubt as to the latest edition of Test Method D5598, contact ASTM Headquarters. Other properties of significance to spark-ignition engine fuel are described in Specification D4814.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Some acids can be present in aviation turbine fuels due either to the acid treatment during the refining process or to naturally occurring organic acids. Significant acid contamination is not likely to be present because of the many check tests made during the various stages of refining. However, trace amounts of acid can be present and are undesirable because of the consequent tendencies of the fuel to corrode metals that it contacts or to impair the water separation characteristics of the aviation turbine fuel.5.2 This test method is designed to measure the levels of acidity that can be present in aviation turbine fuel and is not suitable for determining significant acid contamination.1.1 This test method covers the determination of the acidity in aviation turbine fuel in the range from 0.000 mg/g to 0.100 mg/g KOH.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车