微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

4.1 In the distribution system for many products there is a phase wherein the packaged product may be stored for a period of time in a manner such that one or more containers are superimposed one upon the other. Failure can occur in any layer4 (see Fig. 1 and Fig. 3).FIG. 1 Containers Under Constant Load of Dead Weights Imposed by Other ContainersFIG. 2 Container Under Constant Load of Dead WeightsFIG. 3 Containers Under Constant Load in Compression Test Machine With Fixed Platen4.2 This test method subjects a container, empty or filled, to a predetermined static load, and to specified atmospheric conditions, if required.1.1 This test method is designed to determine the resistance of a shipping container to a vertically applied constant load for either a specified time or to failure. The test method may also be used for palletized or unitized load configurations.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 This practice is intended to be used by parties involved in the testing of floors and roofs of structures either in the field or the laboratory. Tests are either proof tests or tests to failure, and are applicable to all construction materials. The practice is not intended for use in routine quality control testing of individual building elements or constructions.1.1 This practice covers static load testing of floors and low slope roofs (roofs having a slope of less than 1 in 12) under actual or simulated service conditions, and is applicable to typical elements or sections of structures fabricated for test or to actual existing building components. This practice is intended for use in determining the strength and stiffness of elements or sections of floors and roofs of buildings under gravity loads, as well as in checking the design, materials, connections, and the quality of the fabrication of such building constructions.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

定价: 515 加购物车

在线阅读 收 藏

1.1 This practice describes methods for evaluating the shear capacity of a typical section of a framed wall, supported on a rigid foundation and having load applied in the plane of the wall along the edge opposite the rigid support and in a direction parallel to it. The objective is to provide a determination of the shear stiffness and strength of any structural light-frame wall configuration to be used as a shear-wall on a rigid support.1.2 Limitations—This practice is not intended to be used as a basis for classifying sheathing shear capacity or as an evaluation of combined flexure and shear resulting from the wall being loaded on a flexible foundation.1.2.1 The effect of sheathing variations is assessed by holding all other variables constant. Permitted variations in framing configuration and boundary conditions, however, require accurate documentation of the test setup to validate across-study comparisons of sheathing contribution to wall shear capacity.NOTE 1: A wall tested on a flexible foundation is evaluated by comparing shear stiffness and strength results to those of an identical wall tested on a rigid foundation, following this practice. However, no methods are given for the measurement of wall bending displacements or assessment of stress distribution resulting from foundation flexure. Any extrapolation of wall racking behavior from the foundation conditions specified by this practice to flexible conditions shall be done with the support of a comparative test on a representative foundation.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The thermal expansion under load and the 20 to 50 h creep properties of a refractory are useful in characterizing the load-bearing capacity of a refractory that is uniformly heated. Directly applicable examples are blast furnace stoves and glass furnace checkers.1.1 This test method covers the procedure for measuring the linear change of refractory specimens that are subjected to compressive stress while being heated and while being held at elevated temperatures.1.2 This test method does not apply to materials whose strength depends on pitch or carbonaceous bonds unless appropriate atmospheric control is used (see 7.3).1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Blocking develops in film processing and storage when layers of smooth film are in intimate contact with nearly complete exclusion of air. Temperature, or pressure, or both, can induce or change the degree of adhesion of the surfaces.5.2 The procedure of this test method closely simulates the operation of separating film in some end-use applications.1.1 This test method yields quantitative information regarding the degree of blocking (unwanted adhesion) existing between layers of plastic film. It is not intended to measure susceptibility to blocking.1.2 By this procedure, the film-to-film adhesion, expressed as a blocking load in grams, will cause two layers of film with an area of contact of 100 cm2 to separate. The test method is limited to a maximum load of 200 g.1.3 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: This test method is similar to ISO 11502 Method B, but is not technically equivalent.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Field tests provide the most reliable relationship between the static lateral load applied to a deep foundation and the resulting lateral movement. Test results may also provide information used to assess the distribution of lateral resistance along the element and the long-term load-deflection behavior. The foundation engineer may evaluate the test results to determine if, after applying the appropriate factors, the element or group of elements has an ultimate lateral capacity and a deflection at service load satisfactory to satisfy specific foundation requirements. When performed as part of a multiple-element test program, the foundation engineer may also use the results to assess the viability of different sizes and types of foundation elements and the variability of the test site.5.2 The analysis of lateral test results obtained using proper instrumentation helps the foundation engineer characterize the variation of element-soil interaction properties, such as the coefficient of horizontal subgrade reaction, to estimate bending stresses and lateral deflection over the length of the element for use in the structural design of the element.5.3 If feasible, without exceeding the safe structural load on the element or element cap (hereinafter unless otherwise indicated, “element” and “element group” are interchangeable as appropriate), the maximum load applied should reach a failure load from which the foundation engineer may determine the lateral load capacity of the element. Tests that achieve a failure load may help the designer improve the efficiency of the foundation by reducing the foundation element-length, quantity, or size.5.4 If deemed impractical to apply lateral test loads to an inclined element, the foundation engineer may elect to use lateral test results from a nearby vertical element to evaluate the lateral capacity of the inclined element.5.5 The scope of this standard does not include analysis for foundation lateral capacity, but in order to analyze the test data appropriately it is important that information on factors that affect the lateral load-deformation behavior are properly documented. These factors may include, but are not limited to the following:5.5.1 Subgrade condition and preparation near ground surface.5.5.2 Height at which lateral load is applied above ground surface.5.5.3 Changes in pore water pressure in the soil caused by element driving, construction fill, and other construction operations which may influence the test results for frictional support in relatively impervious soils such as clay and silt.5.5.4 Differences between conditions at time of testing and after final construction such as changes in grade or groundwater level.5.5.5 Potential loss of soil supporting the test element from such activities as excavation and scour.5.5.6 Possible differences in the performance of an element in a group or of an element group from that of a single isolated element.5.5.7 Effect on long-term element performance of factors such as creep, environmental effects on element material, negative friction loads not previously accounted for, and strength losses.5.5.8 Type of structure to be supported, including sensitivity of structure to deflections and relation between live and dead loads.5.5.9 Special testing procedures which may be required for the application of certain acceptance criteria or methods of interpretation.5.5.10 Requirement that non-tested element(s) have essentially identical conditions to those for tested element(s) including, but not limited to, subsurface conditions, element type, length, size and stiffness, and element installation methods and equipment, so that application or extrapolation of the test results to such other elements is valid. For concrete elements, it is sometimes necessary to use higher amounts of reinforcement in the test elements in order to safely conduct the test to the predetermined required test load. In such cases, the foundation engineer shall account for the difference in stiffness between the test elements and the non-tested elements.1.1 The test methods described in this standard measure the lateral deflection of an individual vertical or inclined deep foundation element or group of elements when subjected to static lateral loading. These methods apply to all deep foundations, or deep foundation systems as they are practical to test. The individual components of which are referred to herein as elements that function as, or in a manner similar to, drilled shafts, micropiles, cast-in-place piles (augered-cast-in-place piles, barrettes, and slurry walls), driven piles, such as pre-cast concrete piles, timber piles or steel sections (steel pipes or H-beams) or any number of other element types, regardless of their method of installation. Although the test methods may be used for testing single elements or element groups, the test results may not represent the long-term performance of the entire deep foundation system.1.2 This standard provides minimum requirements for testing deep foundation elements under static lateral load. Project plans, specifications, provisions, or any combination thereof may provide additional requirements and procedures as needed to satisfy the objectives of a particular test program. The engineer in charge of the foundation design, referred to herein as the foundation engineer, shall approve any deviations, deletions, or additions to the requirements of this standard. (exception: the test load applied to the testing apparatus shall not exceed the rated capacity established by the engineer who designed the testing apparatus).1.3 Apparatus and procedures herein designated “optional” may produce different test results and may be used only when approved by the foundation engineer. The word “shall” indicates a mandatory provision, and the word “should” indicates a recommended or advisory provision. Imperative sentences indicate mandatory provisions.1.4 The foundation engineer should interpret the test results obtained from the procedures of this standard to predict the actual performance and adequacy of elements used in the constructed foundation.1.5 An engineer (qualified to perform such work) shall design and approve all loading apparatus, loaded members and support frames. The foundation engineer shall design or specify the test procedures. The text of this standard references notes and footnotes, which provide explanatory material. These notes and footnotes (excluding those in tables and figures) shall not be considered as requirements of the standard. This standard also includes illustrations and appendices intended only for explanatory or advisory use.1.6 Units—The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standard.1.7 The gravitational system of inch-pound units is used when dealing with inch-pound units. In this system, the pound [lbf] represents a unit of force [weight], while the unit for mass is slug. The rationalized slug unit is not given, unless dynamic [F=ma] calculations are involved.1.8 All observed and calculated values shall conform to the guidelines for significant digits and rounding established in Practice D6026.1.8.1 The procedures used to specify how data are collected, recorded and calculated in this standard are regarded as the industry standard. In addition, they are representative of the significant digits that should generally be retained. The procedures used do not consider material variation, purpose for obtaining the data, special purpose studies, or any considerations for the user’s objectives; and it is common practice to increase or reduce significant digits of reported data to be commensurate with these considerations. It is beyond the scope of this standard to consider significant digits used in analysis methods for engineering data.1.9 The method used to specify how data are collected, calculated, or recorded in this standard is not directly related to the accuracy to which the data can be applied in design or other uses, or both. How one applies the results obtained using this standard is beyond its scope.1.10 This standard offers an organized collection of information or a series of options and does not recommend a specific course of action. This document cannot replace education or experience and should be used in conjunction with professional judgment. Not all aspects of this standard may be applicable in all circumstances. This ASTM standard is not intended to represent or replace the standard of care by which the adequacy of a given professional service must be judged, nor should this document be applied without consideration of a project’s many unique aspects. The word “Standard” in the title of this document means only that the document has been approved through the ASTM consensus process.1.11 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.12 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 The procedures outlined in these test methods serve to evaluate the performance of the wall segments for deflection, permanent set, and maximum load-carrying capacity under transverse loading. Performance criteria based on data collected using these procedures fall outside the scope of these test methods.4.2 Transverse loads cannot be applied satisfactorily to some wall constructions, such as masonry, with the specimen in a horizontal position. For such constructions, the loads shall be applied to the specimen in a vertical position thus simulating service conditions.4.3 Test results obtained from the two-point loading (8.2.1 and 9.2.1) and the uniform loading (8.2.2 and 9.2.2) are neither compatible nor interchangeable.1.1 These test methods cover transverse load testing to determine the structural properties of wall segments.1.2 These test methods serve to evaluate the performance of wall panels subject to transverse bending loads applied perpendicular to the plane of the wall. The tests are conducted on horizontal or vertical specimens under two-point loading. It also shall be permitted to apply uniform load using an air bag or a vacuum chamber. Depending upon the configuration tested, these loads are intended to evaluate the transverse deflection, permanent set, and maximum flexural capacity or planar shear capacity, or both, of the wall segment. These test methods are not intended for the evaluation of individual structural framing or supporting members (floor joist, decking, etc.), or both. The connections between the vertical elements of the wall segment and the surrounding construction are excluded from the scope of these methods and shall be evaluated by alternative means.1.3 Notes and footnotes in this standard provide explanatory material. These notes and footnotes, excluding those in tables and figures, shall not be considered as requirements of this standard.1.4 The values stated in SI units are to be regarded as standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 Occasions exist where static charges on the vehicle must be dissipated by way of the tires. Electrical resistance inversely measures the tire's ability to dissipate static charge from the vehicle.1.1 This test method covers the measurement of the electrical resistance between the wheel of a mounted and inflated tire-wheel assembly and a flat conducting surface in loaded contact with the tire.1.2 This test method specifies procedures and equipment such that electrical resistance can be accurately determined for tires with values up to 1012 Ω (ohms).1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏
541 条记录,每页 15 条,当前第 7 / 37 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页