5.1 This practice is useful in identifying the major organic constituents in wastewater for support of effective in-plant or pollution control programs. Currently, the most practical means for tentatively identifying and measuring a range of volatile organic compounds is gas-liquid chromatography. Positive identification requires supplemental testing (for example, multiple columns, speciality detectors, spectroscopy, or a combination of these techniques).1.1 This practice covers general guidance applicable to certain test methods for the qualitative and quantitative determination of specific organic compounds, or classes of compounds, in water by direct aqueous injection gas chromatography (1, 2, 3, 4).21.2 Volatile organic compounds at aqueous concentrations greater than about 1 mg/L can generally be determined by direct aqueous injection gas chromatography.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
3.1 This test method describes the analytical measurement of residual matter in solvents that are intended to be 100 % volatile at 105 °C ± 5 °C. Volatile solvents are used in the manufacture of paint, varnish, lacquer, and other related products, and the presence of any residue may affect the product quality or efficiency of the process. This test method is useful in manufacturing control and assessing compliance with specifications.1.1 This test method covers the determination of the nonvolatile matter in volatile solvents for use in paint, varnish, lacquer, and related products.1.2 The following applies to all specified limits in this standard; for purposes of determining conformance with this standard, an observed value or a calculated value shall be rounded off “to the nearest unit” in the last right-hand digit used in expressing the specification limit, in accordance with the rounding-off method of Practice E29.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 For hazard information and guidance, see the supplier’s Material Safety Data Sheet for materials listed in this test method.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific hazard statements, see Section 5.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 The Hi-Vol sampler is commonly used for the collection of the airborne particulate component of the atmosphere. Some physical and chemical parameters of the collected particulate matter are dependent upon the physical characteristics of the collection system and the choice of filter media. A variety of options available for the Hi-Vol sampler give it broad versatility and allow the user to develop information about the size and quantity of airborne particulate material and, using subsequent chemical analytical techniques, information about the chemical properties of the particulate matter.5.2 This test method presents techniques that when uniformly applied, provide measurements suitable for intersite comparisons.5.3 This test method measures the atmosphere presented to the sampler with good precision, but the actual dust levels in the atmosphere can vary widely from one location to another. This means that sampler location may be of paramount importance, and may impose far greater variability of results than any lack of precision in the method of measurement. In particular, localized dust sources may exert a major influence over a very limited area immediately adjacent to such sources. Examples include unpaved streets, vehicle traffic on roadways with a surface film of dust, building demolition and construction activity, or nearby industrial plants with dust emissions. In some cases, dust levels measured close to such sources may be several times the community wide levels exclusive of such localized effects (see Practice D1357).1.1 This test method provides for sampling a large volume of atmosphere, 1600 m3 to 2400 m3 (55 000 ft3 to 85 000 ft3), by means of a high flow-rate vacuum pump at a rate of 1.13 m3/min to 1.70 m3/min (40 ft3/min to 60 ft3/min) (1-4).21.2 This flow rate allows suspended particles having diameters of less than 100 μm (stokes equivalent diameter) to be collected. However, the collection efficiencies for particles larger than 20 μm decreases with increasing particle size and it varies widely with the angle of the wind with respect to the roof ridge of the sampler shelter and with increasing speed (5). When glass fiber filters are used, particles within the size range of 100 μm to 0.1 μm diameters or less are ordinarily collected.1.3 The upper limit of mass loading will be determined by plugging of the filter medium with sample material, which causes a significant decrease in flow rate (see 6.4). For very dusty atmospheres, shorter sampling periods will be necessary. The minimum amount of particulate matter detectable by this method is 3 mg (95 % confidence level). When the sampler is operated at an average flow rate of 1.70 m3/min (60 ft3/min) for 24 h, this is equivalent to 1 μg/m3 to 2 μg/m3 (3).1.4 The sample that is collected may be subjected to further analyses by a variety of methods for specific constituents.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Abrasion resistance during transport and storage is essential to prevent marring of type matter, designs, or protective coatings on the exterior of labels and other printed materials. Recognizing that the actual amount of abrasion occurring in the field depends on relative humidity, temperature, tightness of packing, and a host of other variables, this test method provides a rapid means for comparing the abrasion resistance of test surfaces under laboratory conditions. It is useful for specification acceptance between the supplier and the customer.5.2 This test method can also be used to evaluate the relative abrasion resistance of printed inks, varnishes, laminates and substrates, and the abrasiveness of inks.1.1 This test method covers the procedure for determining the abrasion resistance of printed matter using a GA-CAT Comprehensive Abrasion Tester.1.2 This test method is applicable to packaging labels, book, catalog, and magazine covers, bar codes, corrugated boxes, and other containers having applied graphics on any flat substrate. It is not recommended for powder coatings.1.3 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 This test method is used for determining emission factors and emission rates for low mass wood-burning fireplaces.5.1.1 The emission factor is useful for determining emission performance during product development.5.1.2 The emission factor is useful for the air quality regulatory community for determining compliance with emission performance limits.5.1.3 The emission rate may be useful for the air quality regulatory community for determining impacts on air quality from fireplaces, but must be used with caution as use patterns must be factored into any prediction of atmospheric particulate matter impacts from fireplaces based on results from this method.5.2 The reporting units are grams of particulate per kilogram of dry fuel and grams of particulate per hour.5.2.1 Appropriate reporting units for comparing emissions from non-heating appliances: grams per kilogram.5.2.2 Appropriate reporting units for predicting atmospheric emission impacts only if hours of fireplace use are factored in: grams per hour.1.1 This test method covers the fueling and operating protocol for determining particulate matter emissions from wood fires in low mass wood-burning fireplaces. The fueling and operating protocol for determining particular matter emissions from masonry or other high mass fireplaces is covered in Annex A1 of this test method.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Asphalt is a material used in the construction of roads and as a roofing material and sealant.5.2 This test method provides a means of evaluating exposure to asphalt fume in the working environment at the presently recommended exposure guidelines (for example, Threshold Limit Values and Biological Exposure Indices, ACGIH).75.3 This procedure has been adapted from NIOSH Method 5023 (withdrawn prior to 4th edition (1994) and replaced in 1998 with NIOSH Method 5042) and OSHA Method 58 to reduce the level of background contamination providing better reproducibility.1.1 This test method covers the determination of asphalt fume particulate matter (as benzene soluble fraction) and total particulate matter weight in workplace atmospheres using a polytetrafluoroethylene (PTFE) filter methodology.1.2 This procedure has been adapted from NIOSH Method 5023 (withdrawn prior to 4th edition (1994) and replaced in 1998 with NIOSH Method 5042) and OSHA Method 58. This adaptation was made to reduce the level of background contamination providing better reproducibility.1.3 This procedure is compatible with high flow rate personal sampling equipment–0.5 to 2.0 L/min. It can be used for personal or area monitoring.1.4 The sampling method develops a time-weighted average (TWA) sample and can be used to determine short-term exposure limit (STEL).1.5 The applicable concentration range for the TWA sample is from 0.2 to 2.0 mg/m3.NOTE 1: A study has suggested candidate solvents for benzene replacement.2 A less toxic solvent for this analysis would be more appropriate, although the substitution with a solvent other than benzene needs further validations with field data.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For more specific precautionary statements, see Section 9.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
3.1 This test method is designed to broaden the scope of the previous edition of the test method by the inclusion of tall oil and tall oil derived from products as test materials. Test Methods D803 currently includes a method for the determination of unsaponifiable matter.3.2 The amount of unsaponifiable matter in tall oil and other related products is important in characterizing such products as it indicates the level of nonacidic material, both free and combined, present in the test material. The unsaponifiable in naval stores products is primarily composed of higher molecular weight alcohols, sterols, and hydrocarbons.1.1 This test method covers the determination of the percentage of material in pine chemicals products as defined in Terminology D804 including rosin, tall oil, and related products, other than insoluble dirt or similar visible foreign matter that does not yield a water-soluble soap when the sample is saponified with potassium hydroxide.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 1: It has been reported that this method may not be applicable to gum rosin, especially any gum rosin containing volatile terpenes. Volatile terpenes are by definition unsaponifiable matter, and can be lost under the drying conditions described in 8.4. The method is applicable to tall oil rosin and wood rosin as these rosins do not contain volatile terpenes.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 The health of workers in many industries is at risk through exposure by inhalation to toxic metals and metalloids. Industrial hygienists and other public health professionals need to determine the effectiveness of measures taken to control workplace exposure. This is generally achieved by making workplace air measurements. This test method has been developed to make available a standard methodology for valid exposure measurements for a wide range of metals and metalloids that are used in industry. It will be of benefit to agencies concerned with health and safety at work; analytical laboratories; industrial hygienists and other public health professionals; industrial users of metals and metalloids and their workers; and other groups.5.2 This test method specifies a generic method for determination of the concentration of metals and metalloids in workplace air samples using ICP-MS. For many metals and metalloids, analysis by ICP-MS may be advantageous, when compared to methods such as ICP atomic emission spectrometry, due to its sensitivity and the presence of fewer spectral interferences.5.3 The analysis results can be used for the assessment of workplace exposures to metals and metalloids in workplace air.1.1 This test method specifies a procedure for sample preparation and analysis of airborne particulate matter for the content of metals and metalloids in workplace air samples using inductively coupled plasma–mass spectrometry (ICP-MS). This test method can be used for other air samples provided the user ensures the validity of the test method (by ensuring that appropriate data quality objectives can be achieved).1.2 This test method assumes that samples will have been collected in accordance with Test Method D7035 with consideration of guidance regarding wall deposits provided in Guide D8358.1.3 This test method should be used by analysts experienced in the use of ICP-MS, the interpretation of spectral and matrix interferences and procedures for their correction.1.4 This test method specifies a number of alternative methods for preparing test solutions from samples of airborne particulate matter. One of the specified sample preparation methods is applicable to the measurement of soluble metal or metalloid compounds. Other specified methods are applicable to the measurement of total metals and metalloids.1.5 It is the user's responsibility to ensure the validity of this test method for samples collected from untested matrices.1.6 Table 1 provides a non-exclusive list of metals and metalloids for which one or more of the sample dissolution methods specified in this document is applicable.1.7 This test method is not applicable to compounds of metals and metalloids that are present in the gaseous or vapor state.1.8 Table 3 provides examples of instrumental detection limits (IDL) that can be achieved with this test method. Table 5 provides examples of method detection limits (MDL) that can be achieved.1.9 No detailed operating instructions are provided because of differences among various makes and models of suitable ICP-MS instruments. Instead, the analyst shall follow the instructions provided by the manufacturer of the particular instrument. This test method does not address comparative accuracy of different devices or the precision between instruments of the same make and model.1.10 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.11 This test method contains notes that are explanatory and are not part of the mandatory requirements of the method.1.12 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.13 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 843元 加购物车