微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 This test method is used to determine the time to sustained flaming and heat release of materials and composites exposed to a prescribed initial test heat flux in the cone calorimeter apparatus.5.2 Quantitative heat release measurements provide information that can be used for upholstery and mattress product designs and product development.5.3 Heat release measurements provide useful information for product development by yielding a quantitative measure of specific changes in fire performance caused by component and composite modifications. Heat release data from this test method will not be predictive of product behavior if the product does not spread flame over its surface under the fire exposure conditions of interest.5.4 Test Limitations—The test data are invalid if either of the following conditions occur: (1) explosive spalling; or (2) the specimen swells sufficiently prior to ignition to touch the spark plug, or the specimen swells up to the plane of the heater base during combustion.1.1 This fire-test-response test method can be used to determine the ignitability and heat release from the composites of contract, institutional, or high-risk occupancy upholstered furniture or mattresses using a bench scale oxygen consumption calorimeter.1.2 This test method provides for measurement of the time to sustained flaming, heat release rate, peak and total heat release, and effective heat of combustion at a constant initial test heat flux of 35 kW/m2. This test method is also suitable to obtain heat release data at different heat fluxes. The specimen is oriented horizontally, and a spark ignition source is used.1.3 The times to sustained flaming, heat release, and effective heat of combustion are determined using the apparatus and procedures described in Test Method E1354.1.4 The tests are performed on bench-scale specimens combining the furniture or mattress outer layer components. Frame elements are not included.1.5 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.6 This standard is used to measure and describe the response of materials, products, or assemblies to heat and flame under controlled conditions, but does not by itself incorporate all factors required for fire hazard or fire risk assessment of the materials, products, or assemblies under actual fire conditions.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 6.1.8 Fire testing is inherently hazardous. Adequate safeguards for personnel and property shall be employed in conducting these tests.1.9 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 A major concern of metals producers, warehouses, and users is to establish and maintain the identity of metals from melting to their final application. This involves the use of standard quality assurance practices and procedures throughout the various stages of manufacturing and processing, at warehouses and materials receiving, and during fabrication and final installation of the product. These practices typically involve standard chemical analyses and physical tests to meet product acceptance standards, which are slow. Several pieces from a production run are usually destroyed or rendered unusable through mechanical and chemical testing, and the results are used to assess the entire lot using statistical methods. Statistical quality assurance methods are usually effective; however, mixed grades, off-chemistry, and nonstandard physical properties remain the primary causes for claims in the metals industry. A more comprehensive verification of product properties is necessary. Nondestructive means are available to supplement conventional metals grade verification techniques, and to monitor chemical and physical properties at selected production stages, in order to assist in maintaining the identities of metals and their consistency in mechanical properties.4.2 Nondestructive methods have the potential for monitoring grade during production on a continuous or statistical basis, for monitoring properties such as hardness and case depth, and for verifying the effectiveness of heat treatment, cold-working, and the like. They are quite often used in the field for solving problems involving off-grade and mixed-grade materials.4.3 The nondestructive methods covered in this guide provide both direct and indirect responses to the sample being evaluated. Spectrometric analysis instruments respond to the presence and percents of alloying constituents. The electromagnetic (eddy current) and thermoelectric methods, on the other hand, are among those that respond to properties in the sample that are affected by chemistry and processing, and they yield indirect information on composition and mechanical properties. In this guide, the spectrometric methods are classified as quantitative, whereas the methods that yield indirect readings are termed qualitative.4.4 This guide describes a variety of qualitative and quantitative methods. It summarizes the operating principles of each method, provides guidance on where and how each may be applied, gives (when applicable) the precision and bias that may be expected, and assists the investigator in selecting the best candidates for specific grade verification or sorting problems.4.5 For the purposes of this guide, the term “nondestructive” includes techniques that may require the removal of small amounts of metal during the examination, without affecting the serviceability of the product.4.6 The nondestructive methods covered in this guide provide quantitative and qualitative information on metals properties; they are listed as follows:4.6.1 Quantitative: 4.6.1.1 X-ray fluorescence spectrometry, and4.6.1.2 Optical emission spectrometry.4.6.2 Qualitative: 4.6.2.1 Electromagnetic (eddy current),4.6.2.2 Conductivity/resistivity,4.6.2.3 Thermoelectric,4.6.2.4 Chemical spot tests,4.6.2.5 Triboelectric, and4.6.2.6 Spark testing (special case).1.1 This guide is intended for tutorial purposes only. It describes the general requirements, methods, and procedures for the nondestructive identification and sorting of metals.1.2 It provides guidelines for the selection and use of methods suited to the requirements of particular metals sorting or identification problems.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For specific precautionary statements, see Section 10.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This practice describes the essential components of an ICP-AES. The components include excitation/radio-frequency generators, sample introduction systems, spectrometers, detectors, and signal processing and displays. This description allows the user or potential user to gain a cursory understanding of an ICP-AES system. This practice also provides a means for comparing and evaluating various systems, as well as understanding the capabilities and limitations of each instrument.5.2 Training—The manufacturer should provide training in safety, basic theory of ICP-AES analysis, operations of hardware and software, and routine maintenance for at least one operator. Training ideally should consist of the basic operation of the instrument at the time of installation, followed by an in-depth course one or two months later. Advanced courses are also offered at several of the important spectroscopy meetings that occur throughout the year as well as by independent training institutes. Several independent consultants are available who can provide training, sometimes at the user's site.1.1 This practice describes the components of an inductively coupled plasma atomic emission spectrometer (ICP-AES) that are basic to its operation and to the quality of its performance. This practice identifies critical factors affecting accuracy, precision, and sensitivity. It is not the intent of this practice to specify component tolerances or performance criteria, since these are unique for each instrument. A prospective user should consult with the manufacturer before placing an order, to design a testing protocol that demonstrates the instrument meets all anticipated needs.1.2 The values stated in SI units are to be regarded as standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. Specific safety hazard statements are given in Section 13.

定价: 646 加购物车

在线阅读 收 藏

5.1 This practice is to be used for the removal of virucidal agents from test product-virus mixtures, or from test product-neutralizer-virus mixtures, at or after the contact period and before the inoculation of these mixtures into host systems for assay of viral infectivity.5.2 The purpose of the practice is to reduce the concentration of the cytotoxic properties of the test product and neutralizers in order to permit the evaluation of viral infectivity at dilutions that would otherwise be toxic to the host cells.5.3 The practice is applicable to the testing of liquid, pre-saturated towelettes, and pressurized disinfectant products, as well as handwash/rub products.NOTE 3: When testing products, the ability of the solution to pass through the column must be verified prior to testing. Certain products with high viscosities are unable to pass through columns. If the product is determined to be too viscous, alternative neutralization methods should be employed.5.4 This practice is compatible with organic soil loads, hard water, disinfectants containing organic solvents, and chemical neutralizers.1.1 This practice is intended to be used to reduce the cytotoxic level of the virus-test product mixture prior to assaying for viral infectivity. It is used in conjunction with evaluations of the virucidal efficacy of disinfectant solutions, wipes, trigger sprays, or pressurized disinfectant spray products intended for use on inanimate, nonporous environmental surfaces. This practice may also be used in the evaluation of hygienic handwashes/handrubs, or for other special applications. The practice may be employed with all viruses and host systems.NOTE 1: Gel filtration columns may impact virus titer and their use should be taken into consideration when selected for use.1.2 This practice should be performed only by persons trained in virology techniques.1.3 This practice utilizes gel filtration technology. The effectiveness of the practice is dependent on the ratio of gel bed volume to sample size and uniformity in the preparation of columns as well as the conditions of centrifugation. The effectiveness of this practice is maximized by investigator practice and experience with gel filtration techniques.1.4 This practice will aid in the reduction, but not necessarily elimination, of test product toxicity while preserving the titer of the input virus.1.5 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 This test method provides statistical and graphical information concerning floor surface profiles.5.2 Results of this test method are for the purpose of: 5.2.1 Establishing compliance of random or fixed-path trafficked floor surfaces with specified tolerances,5.2.2 Evaluating the effect of different construction methods on the waviness of the resulting floor surface,5.2.3 Investigating the curling and deflection of concrete floor surfaces,5.2.4 Establishing, evaluating, and investigating the profile characteristics of other surfaces, and5.2.5 Establishing, evaluating, and investigating the levelness characteristics of surfaces.5.3 Application: 5.3.1 Random Traffic—When the traffic patterns across a floor are not fixed, two sets of survey lines, approximately equally spaced and at right angles to each other, shall be used. The survey lines shall be spaced across the test section to produce lines of approximately equal total length, both parallel to and perpendicular to the longest test section boundary. Limits are specified in 7.2.2 and 7.3.2.5.3.2 Defined Wheel Path Traffic—For surfaces primarily intended for defined wheel path traffic, only two wheel paths and the initial transverse elevation difference (“side-to-side”) between wheels shall be surveyed.5.3.3 Time of Measurement—For new concrete floor construction, the elevation measurements shall be made within 72 h of final concrete finishing. For existing structures, measurements shall be taken as appropriate.5.3.4 Elevation Conformance—Use is restricted to shored, suspended surfaces.5.3.5 RMS Levelness—Use is unrestricted, except that it is excluded from use with cambered surfaces and unshored, elevated surfaces.1.1 This test method covers data collection and analysis procedures to determine surface flatness and levelness by calculating waviness indices for survey lines and surfaces, elevation differences of defined wheel paths, and levelness indices using the inch-pound system of units.NOTE 1: This test method is the companion to SI Test Method E1486M; therefore, no SI equivalents are shown in this test method.NOTE 2: This test method was not developed for, and does not apply to, clay or concrete paver units.1.1.1 The purpose of this test method is to provide the user with floor tolerance estimates as follows:1.1.1.1 Local survey line waviness and overall surface waviness indices for floors based on deviations from the midpoints of imaginary chords as they are moved along a floor elevation profile survey line. End points of the chords are always in contact with the surface. The imaginary chords cut through any points in the concrete surface higher than the chords.1.1.1.2 Defined wheel path criteria based on transverse and longitudinal elevation differences, change in elevation difference, and root mean square (RMS) elevation difference.1.1.1.3 Levelness criteria for surfaces characterized by either of the following methods: the conformance of elevation data to the test section elevation data mean or the conformance of the RMS slope of each survey line to a specified slope for each survey line.1.1.2 The averages used throughout these calculations are RMS (that is, the quadratic means). This test method gives equal importance to humps and dips, measured up (+) and down (−), respectively, from the imaginary chords.1.1.3 Appendix X1 is a commentary on this test method. Appendix X2 provides a computer program for waviness index calculations based on this test method.1.2 The values stated in inch-pound units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This test method provides statistical and graphical information concerning floor surface profiles.5.2 Results of this test method are for the purpose of the following: 5.2.1 Establishing compliance of random or fixed-path trafficked floor surfaces with specified tolerances;5.2.2 Evaluating the effect of different construction methods on the waviness of the resulting floor surface;5.2.3 Investigating the curling and deflection of concrete floor surfaces;5.2.4 Establishing, evaluating, and investigating the profile characteristics of other surfaces; and5.2.5 Establishing, evaluating, and investigating the levelness characteristics of surfaces.5.3 Application: 5.3.1 Random Traffic—When the traffic patterns across a floor are not fixed, two sets of survey lines approximately equally spaced and at right angles to each other shall be used. The survey lines shall be spaced across the test section to produce lines of approximately equal total length, both parallel to and perpendicular to the longest test section boundary. Limits are specified in 7.2.2 and 7.3.2.5.3.2 Defined Wheel Path Traffic—For surfaces primarily intended for defined wheel path traffic, only two wheel paths and the initial transverse elevation difference (“side-to-side”) between wheels shall be surveyed.5.3.3 Time of Measurement—For new concrete floor construction, the elevation measurements shall be made within 72 h of final concrete finishing. For existing structures, measurements shall be taken as appropriate.5.3.4 Elevation Conformance—Use is restricted to shored, suspended surfaces.5.3.5 RMS Levelness—Use is unrestricted, except that it is excluded from use with cambered surfaces and unshored, elevated surfaces.1.1 This test method covers data collection and analysis procedures to determine surface flatness and levelness by calculating waviness indices for survey lines and surfaces, elevation differences of defined wheel paths, and levelness indices using SI units.NOTE 1: This test method is the companion to inch-pound Test Method E1486.NOTE 2: This test method was not developed for, and does not apply to clay or concrete paver units.1.1.1 The purpose of this test method is to provide the user with floor tolerance estimates as follows:1.1.1.1 Local survey line waviness and overall surface waviness indices for floors based on deviations from the midpoints of imaginary chords as they are moved along a floor elevation profile survey line. End points of the chords are always in contact with the surface. The imaginary chords cut through any points in the concrete surface higher than the chords.1.1.1.2 Defined wheel path criteria based on transverse and longitudinal elevation differences, change in elevation difference, and root mean square (RMS) elevation difference.1.1.1.3 Levelness criteria for surfaces characterized by either of the following methods: the conformance of elevation data to the test section elevation data mean; or by the conformance of the RMS slope of each survey line to a specified slope for each survey line.1.1.2 The averages used throughout these calculations are the root mean squares, RMS (that is, the quadratic means). This test method gives equal importance to humps and dips, measured up (+) and down (−), respectively, from the imaginary chords.1.1.3 Appendix X1 is a commentary on this test method. Appendix X2 provides a computer program for waviness index calculations based on this test method.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 The creation of a standardized test method generally follows a series of steps from inception to approval and ongoing use. In all such stages there are questions of how well the test method performs.4.1.1 Assessments of a new or existing test method generally involve statistical planning and analysis. This standard recommends what approaches may be taken and indicates which standards may be used to perform such assessments.4.2 This standard introduces a series of phases which are recommended to be considered during the life cycle of a test method as depicted in Fig. 1. These begin with a design phase where the standard is initially prepared. A development phase involves a variety of experiments that allow further refinement and understanding of how the test method performs within a laboratory. In an evaluation phase the test method is then examined by way of interlaboratory studies resulting in precision and bias statistics which are published in the standard. Finally, the test method is subject to a monitoring phase.FIG. 1 Sequence of Steps4.3 All ASTM test methods are required to include statements on precision and bias.34.4 Since ASTM began to require all test methods to have precision and bias statements that are based on interlaboratory studies, there has been increased concern regarding what statistical experiments and procedures to use during the development of the test methods. Although there exists a wide range of statistical procedures, there is a small group of generally accepted techniques that are beneficial to follow. This guide is designed to provide a brief overview of these procedures and to suggest an appropriate sequence of conducting these procedures.4.5 Statistical procedures often result in interpretations that are not absolutes. Sometimes the information obtained may be inadequate or incomplete, which may lead to additional questions and the need for further experimentation. Information outside the data is also important in establishing standards and in the interpretation of numerical results.AbstractThis guide identifies statistical procedures for use in developing new test methods or revising or evaluating existing test methods, or both. It also cites statistical procedures especially useful in the application of test methods. This standard recommends what approaches may be taken and indicates which standards may be used to perform such assessments.1.1 This guide identifies statistical procedures for use in developing new test methods or revising or evaluating existing test methods, or both.1.2 This guide also cites statistical procedures especially useful in the application of test methods.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for performing laboratory tests to determine the minimum autoignition temperature (MAIT) of a dust cloud.5.2 The test data developed from this test method can be used to limit the temperature to which a dust cloud is exposed so as to prevent ignition of the cloud. Because of the short duration of the test, the data obtained are most applicable to industrial equipment where dust is present as a cloud for a short time. Because of the small scale of the test and the possible variation of the MAIT value with scale, the data obtained by this test method may not be directly applicable to all industrial conditions.5.3 The MAIT data can also be used in conjunction with minimum spark ignition data to evaluate the hazards of grinding and impact sparks in the presence of dust clouds (1 and 2).35.4 The test values obtained are specific to the sample tested, the method used, and the test equipment utilized. The test values are not to be considered intrinsic material constants, but may be used as a relative measure of the temperature at which a dust cloud self ignites.5.5 The test data are for cloud ignition. Dust in the form of a layer may ignite at significantly lower temperatures than the same dust in the form of a cloud (3). For liquid chemicals, see Test Method E659.1.1 This test method covers the minimum temperature at which a given dust cloud will autoignite when exposed to air heated in a furnace at local atmospheric pressure.1.2 Data obtained from this test method provide a relative measure of dust cloud autoignition temperatures.1.3 This test method should be used to measure and describe the properties of materials, products, or assemblies in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test method may be used as elements of a fire risk assessment which takes into account all of the factors which are pertinent to an assessment of the fire hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 General—Conventional ultrasonics should be considered first for the detection of overt flaws such as delaminations in composites. Thereafter, AU should be considered for composites that are proved to be free of major flaws or discontinuities. The AU method is intended almost exclusively for assessing the collective effects of dispersed defects and subcritical flaw populations. These are material aberrations that influence AU measurements and also underlie mechanical property variations, dynamic load response, and impact and fracture resistance.5.2 Specific Advantages—The AU method can be used to evaluate composite laminate and bond quality using access to only one surface as, for example, the exterior surface of pressure vessels. It is unnecessary to utilize angle beam fixtures because the method can always be applied with probes at normal incidence. The method can be applied using dry coupling with elastomer pads attached to the probes, and there is no need to immerse the examination object in water.5.3 General Applications—The AU method was devised to assess diffuse discontinuity populations and any associated changes of the mechanical properties of composites and composite-like materials. The AU method has been used to evaluate fiber-reinforced composites (6), composite laminates (7), filament-wound pressure vessels (8), adhesive bonds (9), paper and wood products (10), and cable and rope (11). The method has been shown to be particularly practical for assessing the strength of adhesively bonded joints. It has also been shown to be useful for assessing microporosity (12), micro-cracking (13), hydrothermal aging (14), and damage produced by impacts (15) and fatigue (16).1.1 This guide explains the rationale and basic technology for the acousto-ultrasonic (AU) method. Guidelines are given for nondestructive evaluation (NDE) of flaws and physical characteristics that influence the mechanical properties and relative strength of composite structures (for example, filament-wound pressure vessels), adhesive bonds (for example, joints between metal plates), and interlaminar and fiber/matrix bonds in man-made composites and natural composites (for example, wood products).1.2 This guide covers technical details and rules that must be observed to ensure reliable and reproducible quantitative AU assessments of laminates, composites, and bonded structures. The underlying principles, prototype apparatus, instrumentation, standardization, examination methods, and data analysis for such assessments are covered. Limitations of the AU method and guidelines for taking advantage of its capabilities are cited.1.3 The objective of AU is to assess subtle flaws and associated strength variations in composite structures and bonded joints. Discontinuities such as large voids, disbonds, or extended lack of contact at interfaces can be assessed by other NDE methods such as conventional ultrasonics.1.4 Additional information may be found in the publications cited in the list of references at the end of this guide. The referenced works provide background on research, applications, and various aspects of signal acquisition, processing, and interpretation.1.5 Units—The values stated in either SI units or inch-pound units are to be regarded as standard. The values stated in each system may not be exact equivalents; therefore, each system shall be used independently of the other. Combining values from the two systems may result in non-conformance with the standards.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The term appearance (see 3.2.1) implies the essential presence of human visual observations. The results of visual observation involve not only the step of observing, accomplished by the eye, but also the inseparable step of interpretation in the brain. Instrumental test methods currently cannot duplicate this second step, and therefore can now only approximate, but not fully measure, appearance. Such instrumental measures of appearance properties are useful only to the extent that they can be correlated to the results of visual observations by observers of the appearance phenomena being evaluated.5.2 Almost invariably, too little attention has been paid to ensuring that the essential visual observations have been properly obtained to provide the basis for correlating visual and instrumental test results.5.3 This guide provides the means for assessing observers, by outlining the requirements and tests for their selection, evaluation, and training. This guide should be useful to all experimenters designing or using visual test methods to provide either direct results in terms of the observation of appearance properties, or the experiments correlating such results with instrumental measures approximating the same appearance properties. The user is cautioned to avoid the substitution of validated vision tests with replicas of any kind, either printed, photographed or digitally displayed.1.1 This guide describes criteria and tests for selecting, evaluating, and training human visual-sensory observers for tasks involving the perception and scaling of properties and phenomena relating to appearance.1.2 Examples of tests requiring the use of trained observers include but are not limited to those described in the following ASTM standards: on color, Practice D1535 and Practice E1360; on color difference, Practice D1729 and Test Method D2616; on gloss, Test Method D4449; on metamerism, Practice D4086; and on setting tolerances, Practice D3134.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 A pure material has a well defined phase transition behavior, and the phase transition plateau, a characteristic of the material, can serve as a reproducible reference temperature for the calibration of thermometers. The melting or freezing points of some highly purified metals have been designated as defining fixed points on ITS-90. The fixed points of other materials have been determined carefully enough that they can serve as secondary reference points (see Tables 1 and 2). This guide presents information on the phase transition process as it relates to establishing a reference temperature.(A) Defining fixed point for ITS-90.(B) Realized as melting point.(C) Based on recommendation of International Bureau of Weights and Measures (BIPM) Working Group 2 of the Comité Consultatif de Thermométrie (CCT-WG2); published as: Bedford, R. E., Bonnier, G., Maas, H., and Pavese, F., "Recommended Values of Temperature on the International Temperature Scale of 1990 for a Selected Set of Secondary Reference Points", Metrologia, Vol 33, 1996, pp. 133. DOI: 10.1088/0026-1394/33/2/3.(A) Values for cells of good design, construction, and material purity used with careful technique. Cells of lesser quality may not approach these values.(B) Realized as melting point.5.2 Fixed-point cells provide users with a means of realizing melting and freezing points. If the cells are appropriately designed and constructed, if they contain material of adequate purity, and if they are properly used, they can establish reference temperatures with uncertainties of a few millikelvins or less. This guide describes some of the design and use considerations.5.3 Fixed-point cells can be constructed and operated less stringently than required for millikelvin uncertainty, yet still provide reliable, durable, easy-to-use fixed points for a variety of industrial calibration and heat treatment purposes. For example, any freezing-point cell can be operated, often advantageously, as a melting-point cell. Such use may result in reduced accuracy, but under special conditions, the accuracy may be commensurate with that of freezing points (see 6.3.10).5.4 The test procedure described in this guide produces qualification test data as an essential part of the procedure. These data furnish the basis for quality control of the fixed-point procedure. They provide for evaluation of results, assure continuing reliability of the method, and yield insight into the cause of test result discrepancies. The test procedure is applicable to the most demanding uses of fixed-point cells for precise thermometer calibration; it may not be appropriate or cost-effective for all applications. It is expected that the user of this guide will adapt the procedure to specific needs.1.1 This guide describes the essential features of fixed-point cells and auxiliary apparatus, and the techniques required to realize fixed points in the temperature range from 29 °C to 1085 °C.31.2 Design and construction requirements of fixed-point cells are not addressed in this guide. Typical examples are given in Figs. 1 and 2.FIG. 1 Examples of Fixed-Point CellsFIG. 2 Example of Fixed-Point FurnaceNOTE 1: This example shows an insulated furnace body and two alternative types of furnace cores. The core on the left is a three-zone shielded type. The core on the right employs a heat pipe to reduce temperature gradients.1.3 This guide is intended to describe good practice and establish uniform procedures for the realization of fixed points.1.4 This guide emphasizes principles. The emphasis on principles is intended to aid the user in evaluating cells, in improving technique for using cells, and in establishing procedures for specific applications.1.5 For the purposes of this guide, the use of fixed-point cells for the accurate calibration of thermometers is restricted to immersion-type thermometers that, when inserted into the reentrant well of the cell, (1) indicate the temperature only of the isothermal region of the well, and (2) do not significantly alter the temperature of the isothermal region of the well by heat transfer.1.6 This guide does not address all of the details of thermometer calibration.1.7 This guide is intended to complement special operating instructions supplied by manufacturers of fixed-point apparatus.1.8 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.9 The following hazard caveat pertains only to the test method portion, Section 7, of this guide. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This guide covers procedures for quantifying the elemental composition of phases in a microstructure. It includes both methods that use standards as well as standardless methods, and it discusses the precision and accuracy that one can expect from the technique. The guide applies to EDS with a solid-state X-ray detector used on an SEM or EPMA.5.2 EDS is a suitable technique for routine quantitative analysis of elements that are 1) heavier than or equal to sodium in atomic weight, 2) present in tenths of a percent or greater by weight, and 3) occupying a few cubic micrometres, or more, of the specimen. Elements of lower atomic number than sodium can be analyzed with either ultra-thin-window or windowless spectrometers, generally with less precision than is possible for heavier elements. Trace elements, defined as <1.0 %,2 can be analyzed but with lower precision compared with analyses of elements present in greater concentration.1.1 This guide is intended to assist those using energy-dispersive spectroscopy (EDS) for quantitative analysis of materials with a scanning electron microscope (SEM) or electron probe microanalyzer (EPMA). It is not intended to substitute for a formal course of instruction, but rather to provide a guide to the capabilities and limitations of the technique and to its use. For a more detailed treatment of the subject, see Goldstein, et al. (1) This guide does not cover EDS with a transmission electron microscope (TEM).1.2 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

This specification covers performance requirements, test methods, and marking requirements for automatic feed, pellet fuel-burning room heaters that are intended to burn wood pellets or other suitable solid fuel. Pellet fuel-burning room heaters covered by this specification are acceptable for use in manufactured homes when installed in accordance with the Manufactured Home Construction and Safety Standards published by the Department of Housing and Urban Development (HUD). The heaters shall be subject to glazing water shock test, glazing impact test, rain test, solubility test, and drop test.1.1 This specification covers performance requirements, test methods, and marking requirements for automatic feed, pellet fuel-burning room heaters that are intended to burn wood pellets or other suitable solid fuel. These room heaters shall be drafted by forced or natural means.1.2 Exhaust venting systems and associated externally mounted draft inducers are not evaluated by this specification unless they are part of an engineered system provided as part of the room heater. Parts specifically evaluated and determined to be acceptable for use with pellet fuel-burning room heaters are required to be specified in the room heater manufacturer’s instructions and are to be used in evaluating the room heater.1.3 Pellet fuel-burning room heaters covered by this specification are intended for installation in accordance with the applicable requirements of NFPA 211 and in accordance with the applicable building and mechanical codes.1.4 Pellet fuel-burning room heaters covered by this specification are acceptable for use in manufactured homes when installed in accordance with the Manufactured Home Construction and Safety Standards published by the Department of Housing and Urban Development (HUD). See 24 CFR Part 3280.1.5 The terms “product” or “room heater,” as used in this specification, refer to all pellet fuel-burning room heaters or any part thereof covered by the requirements of this specification, unless specifically noted otherwise.1.6 No information provided in this specification is intended to prevent the use of other methods or devices, provided that sufficient technical data are submitted to the authority having jurisdiction to demonstrate that the proposed method or device is equivalent in quality, strength, fire endurance, effectiveness, durability, and safety to that prescribed in this specification.1.7 The notes incorporated into this specification are not prescriptive requirements. They are given for clarification and informational purposes only.1.8 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.9 The following safety hazards caveat pertains only to the test methods portion, Section 10, of this specification: This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.10 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

This specification covers the design, construction, and weatherability of structural standing seam steel roof panel systems. It includes performance requirements for the following elements only: panels, concealed panel clips, panel/clip anchorage, and panel joint sealers. Panel material shall be a hot dip metallic coated product in accordance with one of the following commonly used materials: aluminum-, aluminum-zinc alloy-, zinc-, or zinc-5% aluminum alloy metallic-coated sheet steel. The roof system shall be designed for specified design loads and thermal effects without causing seam separation, permanent panel buckling, or weather-tightness loss. Deflection and serviceability shall be accounted for in the panel system for structural integrity. Static and uplift index tests shall be performed to determine the roof's load capacity. Standing seam roof panel systems shall be installed in accordance with the system design requirements.1.1 This specification covers the design, construction, and weatherability of structural standing seam steel roof panel systems. It includes performance requirements for the following elements only: panels, concealed panel clips, panel/clip anchorage, and panel joint sealers.NOTE 1: These systems are used on both low-slope and steep-slope roof applications. They also are used with or without an underlying deck or sheathing.1.2 The objective of this specification is to provide for the overall performance of the structural standing seam steel roof panel system as defined in 3.2.6 during its service life in order to provide weather protection, carry the specified design loads, and allow proper access over the roof surface in order to provide for periodic maintenance of equipment by the owner.1.3 In addition to structural, the specifier shall evaluate other characteristics beyond the scope of this specification that affect the final choice of roof construction. These include, but are not limited to, functional, legal, insurance, and economic considerations. See Appendix X1 for specifier's checklist.1.4 The specification is not intended to exclude products or systems not covered by the referenced documents.1.5 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.6 The text of this specification contains notes and footnotes that provide explanatory information and are not requirements of this specification.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 This test method provides a procedure for performing laboratory tests to evaluate relative deflagration parameters of dusts.5.2 The MEC as measured by this test method provides a relative measure of the concentration of a dust cloud necessary for an explosion.5.3 Since the MEC as measured by this test method may vary with the uniformity of the dust dispersion, energy of the ignitor, and propagation criteria, the MEC should be considered a relative rather than absolute measurement.5.4 If too weak an ignition source is used, the measured MEC would be higher than the “true” value. This is an ignitability limit rather than a flammability limit, and the test could be described as “underdriven.” Ideally, the ignition energy is increased until the measured MEC is independent of ignition energy. However, at some point the ignition energy may become too strong for the size of the test chamber, and the system becomes “overdriven.” When the ignitor flame becomes too large relative to the chamber volume, a test could appear to result in an explosion, while it is actually just dust burning in the ignitor flame with no real propagation beyond the ignitor.5.5 The recommended ignition source for measuring the MEC of dusts in 20-L chambers is a 2500 or 5000 J pyrotechnic ignitor.4 Measuring the MEC at both ignition energies will provide information on the possible overdriving of the system.5 To evaluate the effect of possible overdriving in a 20-L chamber, comparison tests may also be made in a larger chamber, such as a 1 m3-chamber.5.6 If a dust ignites with a 5000 J ignitor but not with a 2500 J ignitor in a 20-L chamber, this may be an overdriven system.5 In this case, it is recommended that the dust be tested with a 10 000 J ignitor in a larger chamber, such as a 1 m3-chamber, to determine if it is actually explosible.5.7 The values obtained by this test method are specific to the sample tested (particularly the particle size distribution) and the method used and are not to be considered intrinsic material constants.1.1 This test method covers the determination of the minimum concentration of a dust-air mixture that will propagate a deflagration in a near-spherical closed vessel of 20 L or greater volume.NOTE 1: The minimum explosible concentration (MEC) is also referred to as the lower explosibility limit (LEL) or lean flammability limit (LFL).1.2 Data obtained from this test method provide a relative measure of the deflagration characteristics of dust clouds.1.3 This test method should be used to measure and describe the properties of materials in response to heat and flame under controlled laboratory conditions and should not be used to describe or appraise the fire hazard or fire risk of materials, products, or assemblies under actual fire conditions. However, results of this test may be used as elements of a fire risk assessment that takes into account all of the factors that are pertinent to an assessment of the fire hazard of a particular end use.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Specific precautionary statements are given in Section 8.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
285339 条记录,每页 15 条,当前第 8 / 19023 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页