微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

5.1 The measurement of particulate matter is widely performed to characterize emissions from stationary sources in terms of emission concentrations and emission rates to the atmosphere for engineering and regulatory purposes.5.2 This test method provides near real-time measurement results and is particularly well suited for use in performance assessment and optimization of particulate matter controls achieved by air pollution control devices or process modifications (including fuel, feed, or process operational changes) and performance assessments of particulate matter continuous emissions monitoring systems (PM CEMS)5.3 This test method is well suited for measurement of particulate matter-laden gas streams in the range of 0.2 mg/m3 to 50 mg/m3, especially at low concentrations.5.4 The U.S. EPA has concurred that this test method has been demonstrated to meet the Method 301 bias3 and precision criteria for measuring particulate matter from coal fired utility boilers when compared with EPA Method 17 and Method 5 (40CFR60, Appendix A).5.5 This test method can accurately measure relative particulate matter concentrations over short intervals and can be used to assess the uniformity of particulate concentrations at various points on a measurement traverse within a duct or stack.1.1 This test method describes the procedures for determining the mass concentration of particulate matter in gaseous streams using an automated, in-stack test method. This test method, an in-situ, inertial microbalance, is based on inertial mass measurement using a hollow tube oscillator. This test method is describes the design of the apparatus, operating procedure, and the quality control procedures required to obtain the levels of precision and accuracy stated.1.2 This test method is suitable for collecting and measuring filterable particulate matter concentrations in the ranges 0.2 mg/m3 and above taken in effluent ducts and stacks.1.3 This test method may be used for calibration of automated monitoring systems (AMS). If the emission gas contains unstable, reactive, or semi-volatile substances, the measurement will depend on the filtration temperature, and this test method (and other in-stack methods) may be more applicable than out-stack methods for the calibration of automated monitoring systems.1.4 This test method can be employed in sources having gas temperature up to 200°C (392°F) and having gas velocities from 3 to 27 m/s.1.5 This test method includes a description of equipment and methods to be used for obtaining and analyzing samples and a description of the procedure used for calculating the results.1.6 This test method may also be limited from use in sampling gas streams that contain fluoride, or other reactive species having the potential to react with or within the sample train.1.7 Appendix X1 provides procedures for assessment of the spatial variation in particulate matter (PM) concentration within the cross section of a stack or duct test location to determine whether a particular sampling point or limited number of sampling points can be used to acquire representative PM samples.1.8 Appendix X2 provides procedures for reducing the sampling time required to perform calibrations of automated monitoring systems where representative PM samples can be acquired from a single sample point and certain other conditions are met.1.9 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.10 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.11 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 This test method measures the volume of dry coating obtainable from a given volume of liquid coating. This value is useful for calculating the volatile organic content (VOC) of a coating and could be used to estimate the coverage (square feet of surface covered at a specified dry film thickness per unit volume) obtainable with different coating products.NOTE 1: In Practice D3960 paragraph 10.3.1, the equation for calculating the VOC content using the percent volume nonvolatile is given. Prior to this method a satisfactory procedure for measuring percent volume nonvolatile did not exist (see Note 11 in Practice D3960).NOTE 2: Since the actual coverage of a coating includes the void volume and the porosity of the film, the coverage value calculated from this method will be inaccurate by that amount, that is, the actual coverage will be greater. The higher the pigment to binder ratio (P/B) of a coating or the higher content of void containing material (latices, hollow beads, etc.) or both, the greater will be the deviation of the coverage calculation (This is also true to a lesser degree with Test Method D2697).4.2 For various reasons the volume nonvolatile value obtained for a coating is often not equal to that predicted from simple linear addition of the weights and volumes of the raw materials in a formulation. One reason is that the volume occupied by a solution of resin in solvent may be the same, greater, or less than the total volume of the separate ingredients. Such contraction or expansion of resin solutions is governed by a number of factors, one of which is the extent and direction of spread between solubility parameters of the resin and solvent.4.3 The spatial configuration of the pigment particles and the degree to which the pigment particles are filled with the binder also affect the volume of a dry coating film. Above the critical pigment volume concentration, the apparent volume of the dry film is significantly greater than theoretical due to the increase in unfilled voids between pigment particles. The use of volume nonvolatile matter values in such instances should be carefully considered as the increased volume is largely due to air trapped in these voids.4.4 For thin films, the issue of critical pigment volume effects is usually not a concern. With high poly(vinyl chloride) (PVC) films, however, liquid displacement of air voids takes place with difficulty even under high pressures. Helium solves this problem since, as a gas, it readily penetrates and displaces air, water, and volatile solvents even at low pressures. Purging the gas pycnometer flushes these materials from the film.1.1 This test method covers the determination of the percent volume nonvolatile matter of a variety of clear and pigmented coatings. The approach used should provide faster and more accurate results than the use of the liquid displacement technique in Test Method D2697, particularly for coatings that are difficult to wet or that contain voids, cracks or other defects. The improvement in accuracy stems from the superior ability of helium gas under pressure to penetrate very small pores and surface irregularities in dried films. This provides a more accurate determination of void volumes than can be obtained via liquid displacement.1.2 The technique will provide results under the following constraints:1.2.1 The stability of the helium gas pycnometer is greater than ±0.005 cm3.1.2.2 Test specimen weights are greater than 1 g.1.3 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 This test method is used for determining particulate matter (PM) emission rates and emission factors for wood heaters.5.2 This method is used in conjunction with Annex A2 for determining particulate matter (PM) emissions for Single Burn Rate heaters.5.3 Use of this test method in conjunction with Annex A1 and CSA B415.1 allows overall thermal efficiency, carbon monoxide emission rate, and particulate matter per unit of heat output to be determined.5.4 The fuel load specified in this test method is cordwood that is representative of the fuel actually burned in homes. The intent is that the results from this test method will be more predictive of in-home performance than other test methods using a lumber crib of uniform dimensions.1.1 This test method covers the fueling and operating protocol for determining average particulate matter emissions from wood fires in wood-burning room heaters and fireplace inserts as well as options for determining heat output, efficiency, and carbon monoxide emissions.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. Refer to 4.3.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 This test method is used to demonstrate compliance with state, EPA as well as relevant international regulations for PM emissions from light-duty vehicles.5.1.1 The EPA Tier 3 and CARB LEV III regulations specify FTP and SFTP PM emission standards for light-duty vehicles.1.1 This test method covers a procedure for the gravimetric determination of particulate matter (PM) collected from diluted light duty vehicle exhaust. It is applicable to mass rates from 0.32 to 32 mg/km (0.2 to 20 mg/mile).1.2 Diluted exhaust is passed through pre-weighed filter media which is re-weighed after sampling. The difference in weight is used to determine particulate mass, which is then used with other data to calculate the distance specific emissions.1.3 The particulate materials that are measured using this test method are generated by a vehicle following the PM standard applicable portions of the United States Environmental Protection Agency (EPA) and California Air Resources Board (CARB) driving schedules and test procedures for determining the emissions of light duty vehicles. For other jurisdictions, consult regional regulations for applicability of these test procedures. These test procedures are referenced in Annex A3 of this document.1.4 The primary intent of this test method is to summarize the PM measurement test procedures as defined by the EPA and CARB (40 CFR Parts §1066, §1065, §86.101, and CARB test procedures for hybrid vehicle testing).NOTE 1: Some requirements are generalized from core references for simplicity and to provide guidance for users applying the principals in this standard to regions not governed by EPA and CARB regulation. For specific details, reference the regulated procedures.1.5 The values stated in SI units are to be regarded as standard. The values given in parentheses after SI units are provided for information only and are not considered standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

5.1 The following is a non-exclusive list of standards to which this guide applies: Guide D6062; Test Methods D4185, D4532, D6785, D7035, D7439, D7948; and Practices D6061 and D6552.5.2 The applicability of this guide to other standards under the jurisdiction of ASTM Committee D22, but not the direct responsibility of Subcommittee D22.04, should be considered where analyte entry into the sampler is considered the sample and where analyte adherence to internal sampler surfaces (“walls”) is likely to scavenge analyte from the collection substrate.5.3 Aerosol samplers typically consist of a filter or other collection substrate, for example an impaction plate or foam, supported in a container or holder. The entire device typically is considered an aerosol sampler. The sampling efficiency of the aerosol sampler, that is, the ratio of the concentration collected by the collection substrate to the undisturbed concentration in the air, has three components: (1) aspiration (or entry) efficiency; (2) transport efficiency (depending on design, both from entry “plane” to internal separator and from any internal separator to collection substrate); and (3) penetration (through the internal separator). For a sampler of a specific design, the three efficiency components are functions of particle (aerodynamic) size and flow rate. The aspiration efficiency also depends on wind speed and direction, while the sampler’s angle to the vertical influences both the aspiration efficiency and the transport efficiency. Ideally, when a sampler is designed and tested for its sampling performance, or both, it should first be established what is considered as the collected sample (that is, the deposit on the collection substrate, but also any deposits on any internal surfaces if these are to be analysed).5.4 Part of the aerosol entering a sampler will deposit on the internal surfaces of the sampler prior to reaching the collection substrate. There are number of mechanisms by which this can occur, including bounce from the filter, inertial impaction, gravitational settling and electrostatic attraction after entry. In addition, after sample collection, if the collection substrate is transported while mounted in the sampler, it is possible that particles originally deposited on the collection substrate may dislodge during transportation. Such particles can thereby contribute to deposits on the walls, as well as on the base of any cover plate or plug. All particles found elsewhere than on or in the collection substrate are often loosely termed “wall deposits.” If the sample of interest entails the entire aspirated air particulate into the container or holder (sampler), it is necessary to account for these wall deposits, especially if it cannot be shown that they should be disregarded.5.5 The research underpinning the information in this guide has arisen partly from studies of inert particles (3, 4), but mostly from investigations of methods for the determination of airborne metalliferous particulates (2, 5-15). However, the issues at hand are also important in sampling airborne organic materials, including bacterial endotoxin (16), wood (17), and pharmaceutical dusts (18); another relevant study reported results from investigations in thermosetting plastics, wood, paper, and animal breeding (19). Except in the case of very large wood dust particles, there is no evidence to suggest that wall deposited particles are sufficiently different from those found on the collection substrate to warrant their exclusion (13, 14). Wall deposits are not limited to aerosol samplers for larger airborne particles but may also be found in samplers for finer particles (20, 21). There may be a justification for excluding wall deposits where the performance of an aerosol sampler tested to EN 13205 shows appropriate compliance with the relevant ISO 7708 size-selective convention without their inclusion.5.6 The findings of studies that have been carried out to assess wall deposits in two commonly used samplers are summarized in Table 1 and Table 2. A commonly used sampler, the 37-mm closed-face polystyrene cassette (CFC), is specified as the sampler of choice in many U.S. National Institute for Occupational Safety and Health (NIOSH) and U.S. Occupational Safety and Health Administration (OSHA) methods (1). While the specific methods may not explicitly call for the recovery and analysis of CFC wall deposits, inclusion of wall deposits is called for by both agencies (22). Another widely used sampler, the Institute of Occupational Medicine (IOM) personal inhalable sampler, was specifically developed for the purpose of collecting the inhalable fraction of aerosol in accordance with ISO 7708 specifications (23). Wall deposits in this sampler were noted during its development and are specifically included as part of the sample (24), although no standard protocol has been published for their inclusion other than for gravimetric analysis. Side-by-side studies have shown little difference between these two samplers when used to collect aerosol in metals industries (12), provided they are analyzed by the same procedure (that is, filter only or filter plus wall deposits). Fewer studies have been carried out in non-metal industries. However, in the study of sewage composting facilities (16), wall deposits of endotoxin exceeded 40 % of the total sample in 34 % of cassettes and exceeded more than half the total sample in some. In the laboratory study of wood dust (17) 85 % of the sample aspirated was found on the cassette walls. In the pharmaceutical industry study (18), averages of 51 %, 62 %, and 72 % of the sample was found on non-filter internal surfaces, depending on compound. Figure 8.2 of Aitken and Donaldson (3) provides a graph of mass faction wall deposits of inert particles in the IOM sampler versus particle size. Although the actual data points are not provided the median is approximately 18 % and the maximum approximately 55 %, in accordance with the data in Table 2. Witschger, et al., (4) provides similar data, with a maximum wall deposit of 50 %. While both these studies were performed in a laboratory, Lidén, et al., (19) presents averages of 24–37 % wall deposits in a range of field samples from non-metal industries, depending on industry.5.7 The Gesamtsstaubprobenhame (GSP) inhalable sampler, and similar metal or plastic versions referred to as a conical inhalable sampler (CIS), has not been the subject of similar extensive investigations of wall deposits. While the GSP met the inhalable convention in a European study without considering wall deposits for particles up to 25 µm AED (25), for particles up 50 µm AED it under-samples by an average of 21 % with respect to the IOM sampler (when wall deposits are considered in the IOM sampler) (26). A study of wall deposits at a lead mine concentrate mill (5) showed up to 40 % (median 24 %) of total aspiration on the walls, while the laboratory wood study (17) found an average of 42 %, suggesting that wall deposits be considered with this sampler. Other samplers not specified in this practice may also have wall deposits; these should be evaluated on a case-by-case basis.5.8 No pattern has been discerned that might allow for correction factors to be used in any single sampler without introducing too great an uncertainty into the result (1, 12)). Therefore, it is necessary to account for the wall deposits in all cases where the sample is meant to include the total aspirated aerosol into the sampler. On the other hand, enough data have now been accumulated to allow rough assumptions to be made regarding the effect of wall deposits on a large population of samples, either historically or for predictive purposes, including estimating the proportion of likely overexposures. These estimates become more precise where there is a body of data involving filter-only and filter plus wall deposits from the specific environment of interest.5.9 Samplers for the ISO 7708 respirable fraction of dust have filters contained in holders downstream of (after) the size-separation device, typically a cyclone. These sample holders, where not electrically conductive, have also been shown to exhibit significant proportions of wall deposits. In a study of field samples (19), up to 32 % of total collected quartz was found on the walls of 2-piece non-conductive styrene cassettes and up to 55 % on the walls of 3-piece styrene non-conductive cassettes, which is similar to what was found in laboratory studies (20).1.1 Many methods for sampling airborne particulate matter entail aerosol collection on a substrate (typically a filter) housed within a container (or holder), the whole apparatus being referred to as an aerosol sampler. In operation, the sampler allows a vacuum (pressure below ambient or room air pressure) to be applied to the rear of the substrate so that sampled air will pass through the substrate, leaving collected particles on the substrate for subsequent analysis. The sampler may also protect the substrate, while the opening (orifice) of the container may further play some role in determining what size range(s) of particles approach the collection substrate (size-selective sampling).1.2 All particles entering the container orifice are considered part of the sample, unless stated otherwise in the method, but not all particles are necessarily found on the substrate after sampling (1).2 Particles may be deposited on the inner walls of the sampler during sampling or may be deposited on the inside walls of the sampler or on the orifice plug or cap following transportation (2). These particles are often loosely referred to as wall deposits. This guide presents background on the importance of these wall deposits and offers procedures by which these deposits can be assessed and included in the sample.1.3 Wall deposits may also occur in multi-stage samplers (for example, cascade impactors), but this guide does not cover such samplers.1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

3.1 This test method is intended for use in the determination of the moisture and other volatile matter contained in fats, oils, and fatliquors used in the softening and stuffing of leather, as well as those used in the manufacture of products for such purpose.1.1 This test method covers the determination of moisture and other volatile material under conditions of the test. It is applicable to all fats, oils, and fatliquors used in the softening and stuffing of leather.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 The measurement of particulate matter and collected residue emission rates is an important test method widely used in the practice of air pollution control. Particulate matter measurements after control devices are necessary to determine total emission rates into the atmosphere.5.1.1 These measurements, when approved by national, state, provincial, or other regional agencies, are often required for the purpose of determining compliance with regulations and statutes.5.1.2 The measurements made before and after control devices are often necessary to demonstrate conformance with regulatory or contractual performance specifications.5.2 The collected residue obtained with this test method is also important in characterizing stack emissions. However, the utility of these data is limited unless a chemical analysis of the collected residue is performed.5.3 These measurements also can be used to calibrate continuous particulate emission monitoring systems by correlating the output of the monitoring instruments with the data obtained by using this test method.1.1 This test method2 covers a method for the measurement of particulate matter (dust) concentration in emission gases in the concentrations below 20 mg/m3 standard conditions, with special emphasis around 5 mg/m3.1.2 To meet the requirements of this test method, the particulate sample is weighed to a specified level of accuracy. At low dust concentrations, this is achieved by:1.2.1 Precise and repeatable weighing procedures,1.2.2 Using low tare weight weighing dishes,1.2.3 Extending the sampling time at conventional sampling rates, or1.2.4 Sampling at higher rates at conventional sampling times (high-volume sampling).1.3 This test method differs from Test Method D3685/D3685M by requiring the mass measurement of filter blanks, specifying weighing procedures, and requiring monitoring of the flue gas flow variability over the testing period. It requires that the particulate matter collected on the sample filter have a mass at least five times a positive mass difference on the filter blank. High volume sampling techniques or an extension of the sampling time may be employed to satisfy this requirement. This test method has tightened requirements on sampling temperature fluctuations and isokinetic sampling deviation. This test method has eliminated the in-stack filtration technique.1.4 This test method may be used for calibration of automated monitoring systems (AMS). If the emission gas contains unstable, reactive, or semi-volatile substances, the measurement will depend on the filtration temperature.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

定价: 646 加购物车

在线阅读 收 藏
242 条记录,每页 15 条,当前第 8 / 17 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页