微信公众号随时随地查标准

QQ交流1群(已满)

QQ群标准在线咨询2

QQ交流2群

购买标准后,可去我的标准下载或阅读

3.1 Both dimension and squareness of resilient floor tile are important considerations, because installed flooring may exhibit an objectionable appearance when either or both characteristics deviate from established tolerances. This test method provides a means of determining actual dimensions and squareness by using a single apparatus and procedure.1.1 This test method covers the determination of both dimensions (length and width) and squareness of resilient floor tile. This test method is intended for use with square tiles ranging from a nominal 9 in. (226 mm) to 40 in. (1016 mm) in dimension.1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

4.1 This guide is aimed at providing a range of in vivo models to aid in preclinical research and development of tissue-engineered medical products (TEMPs) intended for the clinical repair or regeneration of bone.4.2 This guide includes a description of the animal models, surgical considerations, and tissue processing as well as the qualitative and quantitative analysis of tissue specimens.4.3 The user is encouraged to use appropriate ASTM and other guidelines to conduct cytotoxicity and biocompatibility tests on materials, TEMPs, or both, prior to assessment of the in vivo models described herein.4.4 It is recommended that safety testing be in accordance with the provisions of the FDA Good Laboratory Practices Regulations 21 CFR 58.4.5 Safety and effectiveness studies to support regulatory submissions (for example, Investigational Device Exemption (IDE), Premarket Approval (PMA), 510K, Investigational New Drug (IND), or Biologics License Application (BLA) submissions in the U.S.) should conform to appropriate guidelines of the regulatory bodies for development of medical devices, biologics, or drugs, respectively.4.6 Animal model outcomes are not necessarily predictive of human results and should, therefore, be interpreted cautiously with respect to potential applicability to human conditions.1.1 This guide covers general guidelines for the in vivo assessment of tissue-engineered medical products (TEMPs) intended to repair or regenerate bone. TEMPs included in this guide may be composed of natural or synthetic biomaterials (biocompatible and biodegradable) or composites thereof, and may contain cells or biologically active agents such as growth factors, synthetic peptides, plasmids, or cDNA. The models described in this guide are segmental critical size defects which, by definition, will not fill with viable tissue without treatment. Thus, these models represent a stringent test of a material’s ability to induce or augment bone growth.1.2 Guidelines include a description and rationale of various animal models including rat (murine), rabbit (leporine), dog (canine), goat (caprine), and sheep (ovine). Outcome measures based on radiographic, histologic, and mechanical analyses are described briefly and referenced. The user should refer to specific test methods for additional detail.1.3 This guide is not intended to include the testing of raw materials, preparation of biomaterials, sterilization, or packaging of the product. ASTM standards for these steps are available in the Referenced Documents (Section 2).1.4 The use of any of the methods included in this guide may not produce a result that is consistent with clinical performance in one or more specific applications.1.5 Other preclinical methods may also be appropriate and this guide is not meant to exclude such methods. The material must be suitable for its intended purpose. Additional biological testing in this regard would be required.1.6 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.7 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.8 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 The method of powder dispersion in a liquid has a significant effect on the results of a particle size distribution analysis. The analysis will show a too-coarse, unstable, or nonrepeatable distribution if the powder has not been dispersed adequately. It is therefore important that parties wishing to compare their analyses use the same dispersion technique.4.2 This guide provides ways of deriving dispersion techniques for a range of metal powders and compounds. It should be used by all parties performing liquid-dispersed particle size analysis of all of the materials covered by this guide (see 1.1, 1.2, and 4.1).4.3 Table 1 provides some dispersion procedures that have been found useful and consistent for the particular materials listed there. These are only suggested dispersion procedures; the procedures and dispersion checks of 7.1.2 – 7.1.4, or the more detailed method development procedures of Guide E3340, should still be used to verify adequate dispersion for each particular material and particle size range.(A) Stated ultrasonic power and duration times are given as an indication only. Specific conditions should be sought for the particular system in question during the method development phase.(B) Tween 21, chemically known as polyoxyethylene6 sorbitan monolaurate, is manufactured by Croda International PLC, and is available from various chemical suppliers.(C) Three to five drops Tween 21 in 30 to 50 mL water.4.4 This guide should be used in the preparation of powders for use in Test Methods B761 and B822 and other procedures that analyze metal powder particle size distributions in liquid-dispersed systems.1.1 This guide covers the dispersion in liquids of metal powders and related compounds for subsequent use in particle size analysis instruments. This guide describes a general procedure for achieving and determining dispersion; it also lists procedures that have been found useful for certain materials.1.2 This guide does not include specific procedures for dry dispersion of particulate materials. It only indicates when liquid dispersion is not appropriate and dry dispersion must be utilized (see 7.1.2.1). For guidance on development of methods of dry dispersion, see Guide E3340.1.3 This guide is limited to metal powders and related metal compounds. However, the general procedure described herein may be used, with caution as to its significance, for other particulate materials, such as ceramics, pigments, minerals, etc.1.4 Units—The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 515 加购物车

在线阅读 收 藏

5.1 Advanced ceramics usually display a linear stress-strain behavior to failure. Lack of ductility combined with flaws that have various sizes and orientations typically leads to large scatter in failure strength. Strength is not a deterministic property, but instead reflects the intrinsic fracture toughness and a distribution (size and orientation) of flaws present in the material. This standard is applicable to brittle monolithic ceramics which fail as a result of catastrophic propagation of flaws. Possible rising R-curve effects are also not considered, but are inherently incorporated into the strength measurements.5.2 Two- and three-parameter formulations exist for the Weibull distribution. This standard is restricted to the two-parameter formulation.5.3 Tensile and flexural test specimens are the most commonly used test configurations for advanced ceramics. Ring-on-ring and pressure-on-ring test specimens which have multi-axial states of stress are also included. Closed-form solutions for the effective volume and effective surfaces and the Weibull material scale factor are included for these configurations. This practice also incorporates size-scaling methods for C-ring test specimens for which numerical approaches are necessary. A generic approach for arbitrary shaped test specimens or components that utilizes finite element analyses is presented in Annex A3.5.4 The fracture origins of failed test specimens can be determined using fractographic analysis. The spatial distribution of these strength-controlling flaws can be over a volume or an area (as in the case of surface flaws). This standard allows for the conversion of strength parameters associated with either type of spatial distribution. Length scaling for strength-controlling flaws located along edges of a test specimen is not covered in this practice.5.5 The scaling of strength with size in accordance with the Weibull model is based on several key assumptions (5). It is assumed that the same specific flaw type controls strength in the various specimen configurations. It is assumed that the material is uniform, homogeneous, and isotropic. If the material is a composite, it is assumed that the composite phases are sufficiently small that the structure behaves on an engineering scale as a homogeneous and isotropic body. The composite must contain a sufficient quantity of uniformly distributed, randomly oriented reinforcing elements such that the material is effectively homogeneous. Whisker-toughened ceramic composites may be representative of this type of material. This practice is also applicable to composite ceramics that do not exhibit any appreciable bilinear or nonlinear deformation behavior. This standard and the conventional Weibull strength scaling with size may not be suitable for continuous fiber-reinforced composite ceramics. The material is assumed to fracture in a brittle fashion, a consequence of stress causing catastrophic propagation of flaws. The material is assumed to be consistent (batch to batch, day to day, etc.). It is assumed that the strength distribution follows a Weibull two-parameter distribution. It is assumed that each test piece has a statistically significant number of flaws and that they are randomly distributed. It is assumed that the flaws are small relative to the specimen cross section size. If multiple flaw types are present and control strength, then strengths may scale differently for each flaw type. Consult Practice C1239 and the example in 9.1 for further guidance on how to apply censored statistics in such cases. It is also assumed that the specimen stress state and the maximum stress are accurately determined. It is assumed that the actual data from a set of fractured specimens are accurate and precise. (See Terminology E456 for definitions of the latter two terms.) For this reason, this standard frequently references other ASTM standard test methods and practices which are known to be reliable in this respect.5.6 Even if test data has been accurately and precisely measured, it should be recognized that the Weibull parameters determined from test data are in fact estimates. The estimates can vary from the actual (population) material strength parameters. Consult Practice C1239 for further guidance on the confidence bounds of Weibull parameter estimates based on test data for a finite sample size of test fractures.5.7 When correlating strength parameters from test data from one specimen geometry to a second, the accuracy of the correlation depends upon whether the assumptions listed in 5.5 are met. In addition, statistical sampling effects as discussed in 5.6 may also contribute to variations between computed and observed strength-size scaling trends.5.8 There are practical limits to Weibull strength scaling that should be considered. For example, it is implicitly assumed in the Weibull model that flaws are small relative to the specimen size. Pores that are 50 μm (0.050 mm) in diameter are volume-distributed flaws in tension or flexural strength specimens with 5 mm or greater cross section sizes. The same may not be true if the cross section size is only 100 μm.1.1 This standard practice provides methodology to convert fracture strength parameters (primarily the mean strength and the Weibull characteristic strength) estimated from data obtained with one test geometry to strength parameters representing other test geometries. This practice addresses uniaxial strength data as well as some biaxial strength data. It may also be used for more complex geometries proved that the effective areas and effective volumes can be estimated. It is for the evaluation of Weibull probability distribution parameters for advanced ceramics that fail in a brittle fashion. Fig. 1 shows the typical variation of strength with size. The larger the specimen or component, the weaker it is likely to be.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.5.1 The values stated in SI units are in accordance with IEEE/ASTM SI 10.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 646 加购物车

在线阅读 收 藏

4.1 The use of the body measurement information in Table 1 and Table 2 will assist manufacturers in developing patterns and garments that are consistent with the current anthropometric characteristics of the population of interest. This practice should, in turn, reduce or minimize consumer confusion and dissatisfaction related to apparel sizing (also refer to ISO 3635 Size Designation Procedures).4.2 Three-dimensional avatars depicting each of the young men sizes were created by Alvanon, Inc. and included in this standard to assist manufacturers in visualizing the posture, shape, and proportions generated by the measurements charts in Table 1 and Table 2. (See Figs. 1-6.)FIG. 1 Form Front View 32-38FIG. 2 Form Front View 39-48FIG. 3 Form Side View 32-38FIG. 4 Form Side View 39-48FIG. 5 Form Back View 32-38FIG. 6 Form Back View 39-481.1 These tables list body measurements of young men figure type sizes 32-48. Although these are body measurements, they can be used as a baseline in designing apparel for young men in this size range when considering such factors as fabric type, ease for body movement, styling, and fit.1.2 These tables list body measurements for the complete range of young men sizing.1.3 The values stated in either SI units or inch-pound units are to be regarded separately as standard. The values stated in each system are not necessarily exact equivalents; therefore, to ensure conformance with the standard, each system shall be used independently of the other, and values from the two systems shall not be combined.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

5.1 The significant opening size of geotextiles is usually determined using Test Method D4751, which involves sieving calibrated beads through specimens of the geotextile being evaluated. However, Test Method D4751 includes many risks of errors due to static electricity, precision of the glass beads, among other issues.5 This risk of error is even higher with knitted geotextiles which exhibit a very low tensile modulus. This test method is proposed as an alternate to Test Method D4751 using a nondestructive technique, where the stress conditions are controlled without manipulation of the specimen.5.2 This test method has been found to provide representative results for products exhibiting a planar structure, such as two-dimensional knits.5.3 In case of a dispute arising from differences in reported test results when using ASTM D4751 Method A and this method, ASTM D4751 Method A shall be considered the referee method. However, data obtained using ASTM D4751 Method A should be reviewed considering the high risk of human error associated with the control of the stress condition of the geotextile.5.4 Equivalency with the other pore opening size determined using other standards (for example, ISO 12956 and CGSB 148.1 No. 10) can also be considered using adequate correlations with test results obtained with these standards.1.1 This test method covers the determination of the pore size characteristics of geotextiles using an optical method and image analysis.1.2 This method has been developed for determination of the Image Opening Size (IOS) of knitted geotextiles by image analysis. Other properties may be obtained based on the pore size distribution.1.3 The applicability of this test method must be assessed on a product-by-product basis, as it requires light to pass through its thickness to provide a useful observation. As a general rule, the tested product must be thin. Example of products which cannot be tested using this test method is thick needle-punched nonwoven and woven with a complex three-dimensional structure.1.4 This test method shows values in both SI units and inch-pound units. SI units is the technically correct name for the system of metric units known as the International System of Units. Inch-pound units is the technically correct name for the customary units used in the United States. The values in inch-pound units are provided for information only.1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.6 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏

定价: 0元 / 折扣价: 0 加购物车

在线阅读 收 藏

5.1 It is important to recognize that the results obtained by this test method or any other method for particle size determination utilizing different physical principles may disagree. The results are strongly influenced by physical principles employed by each method of particle size analysis. The results of any particle sizing method should be used only in a relative sense and should not be regarded as absolute when comparing results obtained by other methods. Particularly for fine materials (that is, average particle size < 20 μm), significant differences are often observed for laser light scattering instruments of different manufacturers. These differences include lasers of different wavelengths, detector configuration, and the algorithms used to convert scattering to particle size distribution. Therefore, comparison of results from different instruments may be misleading.35.2 Light scattering theories (Fraunhofer Diffraction4 and Mie Scattering5) that are used for determination of particle size have been available for many years. Several manufacturers of testing equipment now have units based on these principles. Although each type of testing equipment utilizes the same basic principles for light scattering as a function of particle size, different assumptions pertinent to application of the theory and different models for converting light measurements to particle size, may lead to different results for each instrument. Furthermore, any particles which are outside the size measurement range of the instrument will be ignored, causing an increase in the reported percentages within the detectable range. A particle size distribution which ends abruptly at the detection limit of the instrument may indicate that particles outside the range are present. Therefore, use of this test method cannot guarantee directly comparable results from different types of instruments.5.3 This test method can be used to determine particle size distributions of catalysts, supports, and catalytic raw materials for specifications, manufacturing control, and research and development work.5.4 For fine materials (that is, average particle size < 20 μm), it is critical that Mie Scattering Theory be applied. This involves entering an “optical model” consisting of the “real” and “imaginary” refractive indices of the solid at the wavelength of the laser. The “imaginary” refractive index is also referred to as the “absorbance,” as it has a value of zero for transparent materials such as glass beads. For common materials and naturally occurring minerals (for example, kaolin), these values are known and published, and usually included in the manufacturer’s instrument manual (for example, as an appendix). For example, kaolinite measured at 589.3 nm has a “real” refractive index of 1.55. The absorbance (imaginary component) for minerals and metal oxides is normally taken as 0.001, 0.01 or 0.1. Many of the published values were measured at 589.3 nm (sodium light) but often values at other wavelengths are also given. Extrapolation, interpolation, or estimation to the wavelength of the laser being used can therefore be made.61.1 This test method covers the determination of the particle size distribution of catalyst, catalyst carrier, and catalytic raw material particles and is one of several found valuable for the measurement of particle size. The range of average particle sizes investigated was from 1 to 300 μm equivalent spherical diameter. The technique is capable of measuring particles above and below this range. The angle and intensity of laser light scattered by the particles are selectively measured to permit calculation of a volume distribution using light-scattering techniques.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

定价: 590 加购物车

在线阅读 收 藏
556 条记录,每页 15 条,当前第 9 / 38 页 第一页 | 上一页 | 下一页 | 最末页  |     转到第   页