This specification provides the requirements for design, construction, performance, and testing of solid state bargraphtype indicating meters. The solid state bargraph meters covered by this specification are intended for use in shipboard applications of electrical measurement. This specification covers the requirements and quality assurance provisions for solid state, panel-type (edgewise), and rectangular switchboard-type instruments, which use light-emitting diodes (LEDs) for bargraph indication and optional digital displays. Bargraph meters shall be classified by type and style. The type designation defines the physical configuration of the meter and the scale. The style designation defines the meters display attributes as follows: bargraph display, and digital display. Meters shall be examined visually and mechanically to verify that materials, design, construction, physical dimensions, workmanship, and markings are as specified.1.1 This specification provides the requirements for design, construction, performance, and testing of solid state bargraph-type indicating meters.1.2 The solid state bargraph meters covered by this specification are intended for use in shipboard applications of electrical measurement. This specification covers the requirements and quality assurance provisions for solid state, panel-type (edgewise), and rectangular switchboard-type instruments, which use light-emitting diodes (LEDs) for bargraph indication and optional digital displays.1.3 This specification’s requirements may be invoked for specialized measurement applications where another quantity, for example, position, weight, concentration of a trace element in an atmosphere sample, and so forth, is converted to electrical energy for display and measurement. Special dial markings shall be specified for such cases.1.4 The values stated in SI units are to be regarded as standard. The values given in parentheses are mathematical conversions to inch-pound units that are provided for information only and are not considered standard.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 This test method may be used to estimate the relative resistances of materials to cavitation erosion, as may be encountered for instance in pumps, hydraulic turbines, valves, hydraulic dynamometers and couplings, bearings, diesel engine cylinder liners, ship propellers, hydrofoils, internal flow passages, and various components of fluid power systems or fuel systems of diesel engines. It can also be used to compare erosion produced by different liquids under the conditions simulated by the test. Its general applications are similar to those of Test Method G32.5.2 In this test method cavitation is generated in a flowing system. Both the velocity of flow which causes the formation of cavities and the chamber pressure in which they collapse can be changed easily and independently, so it is possible to study the effects of various parameters separately. Cavitation conditions can be controlled easily and precisely. Furthermore, if tests are performed at constant cavitation number (σ), it is possible, by suitably altering the pressures, to accelerate or slow down the testing process (see 11.2 and Fig. A2.2).5.3 This test method with standard conditions should not be used to rank materials for applications where electrochemical corrosion or solid particle impingement plays a major role. However, it could be adapted to evaluate erosion-corrosion effects if the appropriate liquid and cavitation number, for the service conditions of interest, are used (see 11.1).5.4 For metallic materials, this test method could also be used as a screening test for applications subjected to high-speed liquid drop impingement, if the use of Practice G73 is not feasible. However, this is not recommended for elastomeric coatings, composites, or other nonmetallic aerospace materials.5.5 The mechanisms of cavitation erosion and liquid impingement erosion are not fully understood and may vary, depending on the detailed nature, scale, and intensity of the liquid/solid interactions. Erosion resistance may, therefore, arise from a mix of properties rather than a single property, and has not yet been successfully correlated with other independently measurable material properties. For this reason, the consistency of results between different test methods (for example, vibratory, rotating disk, or cavitating jet) or under different experimental conditions is not very good. Small differences between two materials are probably not significant, and their relative ranking could well be reversed in another test.5.6 Because of the nonlinear nature of the erosion-time curve in cavitation erosion, the shape of that curve must be considered in making comparisons and drawing conclusions. Simply comparing the cumulative mass loss at the same cumulative test time for all materials will not give a reliable comparison.1.1 This test method covers a test that can be used to compare the cavitation erosion resistance of solid materials. A submerged cavitating jet, issuing from a nozzle, impinges on a test specimen placed in its path so that cavities collapse on it, thereby causing erosion. The test is carried out under specified conditions in a specified liquid, usually water. This test method can also be used to compare the cavitation erosion capability of various liquids.1.2 This test method specifies the nozzle and nozzle holder shape and size, the specimen size and its method of mounting, and the minimum test chamber size. Procedures are described for selecting the standoff distance and one of several standard test conditions. Deviation from some of these conditions is permitted where appropriate and if properly documented. Guidance is given on setting up a suitable apparatus, test and reporting procedures, and the precautions to be taken. Standard reference materials are specified; these must be used to verify the operation of the facility and to define the normalized erosion resistance of other materials.1.3 Two types of tests are encompassed, one using test liquids which can be run to waste, for example, tap water, and the other using liquids which must be recirculated, for example, reagent water or various oils. Slightly different test circuits are required for each type.1.4 This test method provides an alternative to Test Method G32. In that method, cavitation is induced by vibrating a submerged specimen at high frequency (20 kHz) with a specified amplitude. In the present method, cavitation is generated in a flowing system so that both the jet velocity and the downstream pressure (which causes the bubble collapse) can be varied independently.1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
4.1 It is useful to be able to obtain particle size measurement results of a user specified product from multiple instruments and to be able to correlate the results of the measurements. This capability can be advantageous in expanding the use of different technologies to make a measurement or simply to correlate results between instruments of the same technology. An example might be comparing in-process particle size measurements to final inspection particle size measurements.4.2 The viability of this guide will need to be tested on a case-by-case basis as various products may present measurement challenges for some instruments and not all results from all instruments may be able to be correlated to all other results from all other instruments. In addition, positive results should be confirmed and improved with continued data comparisons over time using process measurements from the instruments selected.1.1 This guide describes one methodology to correlate solid particle analysis results between solid particle analysis instruments for user specified products of user specified particle sizes and distributions in order to expand the capability of particle measurement throughout the manufacturing process and provide better control and efficiency. The guide is not limited to instrument type or product type.1.2 Warning—Not all instruments may correlate to all other instruments for various user specified products and size ranges. Instruments may measure different particle features, and they may also measure the same particle features differently and thus correlating the results of any two may be possible for some products but not possible for others. It is also the case that certain materials can be altered by the instruments measuring them which would eliminate them from consideration under this guide if the instrument’s results are determined based on measurements made after the instrument has altered the user specified product.1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 646元 加购物车
5.1 Shipping regulations often require the identification of a material as either a liquid or a solid. This test method may be used to make that determination for regulatory purposes. (See also Test Method D4359.)5.2 For liquid thermosetting resin, as cure progresses, the liquid resin becomes a solid. A thermosetting resin is more easily worked or shaped while in the liquid-like form and becomes more difficult to do so as the cure advances. The point at which the solid-like character becomes dominant is called the gel point and is considered to be the end of the period where the thermosetting resin is workable. Gel point is identified as that point where tan δ = 1 as determined in Test Method D4473.NOTE 1: Gel point at ambient temperature is seldom a useful parameter. Use of this test method at the more useful elevated temperatures requires capabilities readily available but outside of 7.2.6, 7.2.7, and Section 10.5.3 This test method may be used in research, development, and for regulatory compliance.1.1 Using rheometry, this test method determines, for regulatory purposes, whether a viscose viscous material is a liquid or a solid. Very small amounts of material (typically less than 3 g) may be used for this measurement.1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
5.1 This method is used to document the ability of solid waste resource recovery separators to concentrate or classify a particular component (or components) present in solid waste.5.2 The purity determined in this way is used to calculate the recovery achieved by a separator as another measure of its performance, according to Test Method E1108.1.1 This test method covers the determination of the composition of a materials stream in a solid waste resource recovery processing facility. The composition is determined with respect to one or more defined components. The results are used for determining the purity resulting from the operation of one or more separators, and in conjunction with Test Method E1108 used to measure the efficiency of a materials separation device.1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use. For hazard statements, see Section 7.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
4.1 Specular gloss is used primarily as a measure of the shiny appearance of films and surfaces. Precise comparisons of gloss values are meaningful only when they refer to the same measurement procedure and same general type of material. In particular, gloss values for transparent films should not be compared with those for opaque films, and vice versa. Gloss is a complex attribute of a surface which cannot be completely measured by any single number.4.2 Specular gloss usually varies with surface smoothness and flatness. It is sometimes used for comparative measurements of these surface properties.1.1 This test method describes procedures for the measurement of gloss of plastic films and solid plastics, both opaque and transparent. It contains four separate gloss angles (Note 1):1.1.1 60-deg, recommended for intermediate-gloss films,1.1.2 20-deg, recommended for high-gloss films,1.1.3 45-deg, recommended for intermediate and low-gloss films,1.1.4 85-deg, recommended for intermediate and low gloss films, and1.1.5 75-deg, recommended for plastic siding and soffit.NOTE 1: The 85-deg, 75-deg, 60-deg, and 20-deg apparatus and method of measurement duplicate those in Test Method D523 and D3679; those for the 45° procedure are similarly taken from Test Method C346.1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.NOTE 2: There is no known ISO equivalent to this standard.1.3 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 590元 加购物车
5.1 Solid lubricant coatings are applied to surfaces that are exposed to heat and cold to such a degree that in many cases liquid lubricants are not practical. Adherence under these conditions is mandatory to preserve the bearing surfaces during sliding motion.1.1 This test method covers the measurement of the resistance of dry solid film lubricants to deterioration when subjected to temperature extremes.1.2 The values stated in SI units are to be regarded as the standard. The inch-pound units given in parentheses are for information only.1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.4 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 515元 加购物车
This practice covers procedures for obtaining data on the quality of solid electrical insulating materials and for judging whether the materials meet the requirements specified. This practice, however, is not intended to define internal quality control procedures of the producer; rather, it is designed to determine the acceptability of all, or some portion, of a quantity of electrical insulating materials available for inspection by the user of the material. In addition, this practice is intended for use in conjunction with existing material specifications including property characteristic limits, acceptable quality level, standard test methods, and sampling instructions. Data shall be obtained by taking lot samples randomly. Sampling plans are available in single, double, and multiple types. Acceptable quality levels for each critical, major, and minor property as well as inspection levels shall conform to the requirements specified. Acceptance of lot quality shall be determined based on the comparison of test results and other information obtained using the sampling plans with the requirements set forth in the material specification (nonconformity) and on whether the lot meets the requirements specified.1.1 This practice covers procedures for obtaining data pertaining to the quality of a lot of electrical insulating material and for making a judgement whether the lot meets the requirements of a material specification.1.2 This practice is not intended to define a producer's internal quality control procedures but is designed to determine the acceptability of all, or some portion, of a quantity of electrical insulating material that is available for inspection by the user of the material.1.3 This practice is intended to be used in conjunction with an existing material specification that specifies property characteristic limits, acceptable quality level (AQL), standard test methods, and specific sampling instructions.1.4 In the absence of a specification as described in 1.3, use this practice as a guide, after establishment of agreed-upon property characteristics, limits, AQL, standard test methods, and specific sampling instructions.1.5 It is intended that this be a practice for inspection by attributes.1.6 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety, health, and environmental practices and determine the applicability of regulatory limitations prior to use.1.7 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.
定价: 918元 加购物车